Transition Metal Atom–Cluster Synergistic Modification with Tuned d-band Center Imparts Longevous Potassium Metal Anodes
Qian Liu
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
These authors contributed equally to this work.
Search for more papers by this authorYongbiao Mu
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorTao Ye
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
These authors contributed equally to this work.
Search for more papers by this authorXueyu Lian
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
Search for more papers by this authorYiwen Su
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Search for more papers by this authorXiaopeng Chen
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
Search for more papers by this authorZixiong Shi
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorZixiang Meng
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Lin Zeng
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhongti Sun
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jingyu Sun
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorQian Liu
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
These authors contributed equally to this work.
Search for more papers by this authorYongbiao Mu
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorTao Ye
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
These authors contributed equally to this work.
Search for more papers by this authorXueyu Lian
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
Search for more papers by this authorYiwen Su
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Search for more papers by this authorXiaopeng Chen
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
Search for more papers by this authorZixiong Shi
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorZixiang Meng
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Lin Zeng
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhongti Sun
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jingyu Sun
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy, Technologies, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
The tailored nucleation and growth of potassium metal over a current collector is essential to realize longevous potassium metal anodes. The commercial current collector lacks sufficient nucleation sites and fails to guide uniform deposition, underscoring the request for interfacial modulation maneuvers. Herein, we develop transition metal atom–cluster moiety decorated N-doped hollow carbon nanosphere to modify the Al current collector. In a Fe model system, the Fe single atoms provide high surface energy and fast charge transfer, while Fe clusters serve as local electron reservoirs. This cooperative architecture manages to tune the d-band center, accordingly promoting the potassium capture and minimizing the nucleation overpotential to merely 4 mV. Theoretical simulations and in situ microscopic/spectroscopic characterizations evidence that the synergistic modification markedly accelerates potassium plating/stripping kinetics, enabling prolonged symmetric-cell cycling (approaching 3000 h) and stabilized full-cell performance (0.022% decay rate per cycle over 2000 cycles). This strategy could be extended to other transition metals (e.g., Co, Ni, or Cu), offering a paradigm for atomic-level interfacial engineering toward reversible alkali metal batteries.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie2025010150-sup-0001-SuppMat.docx18.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J.-M. Tarascon, Nature 2008, 451, 652–657.
- 2B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928–935.
- 3Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin, Y. Cui, W. Chen, Chem. Rev. 2022, 122, 16610–16751.
- 4X. Lian, L. Xu, Z. Ju, Z. Chen, X. Chen, Y. Yi, Z. Tian, T. Cheng, S. Dou, X. Tao, J. Sun, Energy Environ. Sci. 2025, 18, 322–333.
- 5S. Li, H. Zhu, Y. Liu, Z. Han, L. Peng, S. Li, C. Yu, S. Cheng, J. Xie, Nat. Commun. 2022, 13, 4911–4923.
- 6A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132–1139.
- 7Y. Ma, Z. Liu, X. Zheng, N. A. Khan, R. Luo, Z. Zhu, Z. Zhang, K. Zhang, W. Wang, Y. Meng, Z. Xie, T. Ahmad, W. Chen, Adv. Energy Mater. 2025, 15, 2501912.
- 8Y.-X. Yao, J. Wan, N.-Y. Liang, C. Yan, R. Wen, Q. Zhang, J. Am. Chem. Soc. 2023, 145, 8001–8006.
- 9T. C. Lin, Y. C. Yang, H. Y. Tuan, Adv. Sci. 2025, 12, 2413804.
- 10H. Liu, X.-B. Cheng, Z. Jin, R. Zhang, G. Wang, L.-Q. Chen, Q.-B. Liu, J.-Q. Huang, Q. Zhang, Energy Chem. 2019, 1, 100003.
- 11X. Shi, Y. Zhang, H. Zhang, Z. Zhao, B. Liu, J. Liu, X. Liu, L. Li, Nano Lett. 2024, 24, 12398–12405.
- 12Y. Ma, Z. Liu, Z. Bie, N. A. Khan, X. Chu, Z. Zhu, T. Ahmad, Z. Zhang, K. Zhang, W. Wang, Z. Xie, Y. Meng, W. Chen, CCS Chem. 2025, 7, 1656–1670.
- 13N. Ren, L. Wang, X. Li, K. Cao, Z. He, Y. Shao, J. Xiao, Y. Zhu, B. Pan, S. Jiao, C. Chen, Adv. Funct. Mater. 2024, 34, 2313538.
- 14Q. Yang, Y. Ding, G. He, Chem. Commun. 2020, 56, 3512–3515.
- 15Z. Chen, L. Wang, J. Zheng, Y. Huang, H. Huang, C. Li, Y. Shao, X. Wu, X. Rui, X. Tao, H. Yang, Y. Yu, ACS Nano 2024, 18, 8496–8510.
- 16P. Liu, Y. Wang, H. Hao, S. Basu, X. Feng, Y. Xu, J. A. Boscoboinik, J. Nanda, J. Watt, D. Mitlin, Adv. Mater. 2020, 32, 2002908.
- 17Y. Feng, A. M. Rao, J. Zhou, B. Lu, Adv. Mater. 2023, 35, 2300886.
- 18P. Zhang, R. A. Soomro, Z. Guan, N. Sun, B. Xu, Energy Storage Mater. 2020, 29, 163–171.
- 19L. Song, R. Li, W. Liao, J. Sun, X. Li, Y. Xu, G. Zhou, X. Zhou, Energy Storage Mater. 2024, 71, 103643.
- 20P. Zhai, T. Wang, W. Yang, S. Cui, P. Zhang, A. Nie, Q. Zhang, Y. Gong, Adv. Energy Mater. 2019, 9, 1804019.
- 21X. Lian, Z. Ju, L. Li, Y. Yi, J. Zhou, Z. Chen, Y. Zhao, Z. Tian, Y. Su, Z. Xue, X. Chen, Y. Ding, X. Tao, J. Sun, Adv. Mater. 2023, 36, 2302996.
- 22Z. Yang, Y. Dang, P. Zhai, Y. Wei, Q. Chen, J. Zuo, X. Gu, Y. Yao, X. Wang, F. Zhao, J. Wang, S. Yang, P. Tang, Y. Gong, Adv. Energy Mater. 2022, 12, 2103368.
- 23F. Liu, J. Meng, G. Jiang, J. Li, H. Wang, Z. Xiao, R. Yu, L. Mai, J. Wu, Matter 2021, 4, 4006–4021.
- 24J. Gu, Q. Zhu, Y. Shi, H. Chen, D. Zhang, Z. Du, S. Yang, ACS Nano 2020, 14, 891–898.
- 25J. Cui, B. Jin, A. Xu, J. Li, M. Shao, Adv. Sci. 2023, 10, 2206479.
- 26Y. Li, Y. Li, J. Lu, P. Wen, L. Zhang, Q. Jiang, H. Shi, C. Meng, J. Sun, Y. Guo, Y. Wang, Y. Yao, S. Qian, Y. Yu, J. Lu, X. Bao, Z. S. Wu, Adv. Mater. 2025, 37, 2415026.
- 27W. Huang, S. Liu, R. Yu, L. Zhou, Z. Liu, L. Mai, Energy Environ. Mater. 2023, 6, e12466.
- 28Z. Liang, C. Peng, J. Shen, Y. Yang, S. Yao, D. Xue, M. Zhu, J. Liu, J. Power Sources 2023, 556, 232474.
- 29M. Zhu, S. Li, B. Li, Y. Gong, Z. Du, S. Yang, Sci. Adv. 2019, 5, eaau6264.
- 30J. Wang, J. Zhang, J. Wu, M. Huang, L. Jia, L. Li, Y. Zhang, H. Hu, F. Liu, Q. Guan, M. Liu, H. Adenusi, H. Lin, S. Passerini, Adv. Mater. 2023, 35, 2302828.
- 31Y. S. Feng, Y. N. Li, P. Wang, Z. P. Guo, F. F. Cao, H. Ye, Angew. Chem. Int. Ed. 2023, 62, e202310132.
- 32H. Xu, S. Zhang, X. Zhang, M. Xu, M. Han, L. R. Zheng, Y. Zhang, G. Wang, H. Zhang, H. Zhao, Angew. Chem. Int. Ed. 2023, 62, e202314414.
- 33J. Wang, J. Zhang, S. Duan, L. Jia, Q. Xiao, H. Liu, H. Hu, S. Cheng, Z. Zhang, L. Li, W. Duan, Y. Zhang, H. Lin, Nano Lett. 2022, 22, 8008–8017.
- 34D. Zhang, X. Ma, L. Wu, J. Wen, F. Li, J. Zhou, A. M. Rao, B. Lu, Adv. Energy Mater. 2023, 13, 2203277.
- 35K. Xu, M. Zhu, X. Wu, J. Liang, Y. Liu, T. Zhang, Y. Zhu, Y. Qian, Energy Storage Mater. 2019, 23, 587–593.
- 36D. Sui, R. Luo, S. Xie, H. Zhang, T. Ma, H. Sun, T.-T. Jia, J. Sun, X. Li, Chem. Eng. J. 2024, 480, 148007.
- 37I. Jang, S. Lee, D. g. Kim, V. K. Paidi, S. Lee, N. D. Kim, J. Y. Jung, K. S. Lee, H. K. Lim, P. Kim, S. J. Yoo, Adv. Mater. 2024, 36, 2403274.
- 38X. Wan, Q. Liu, J. Liu, S. Liu, X. Liu, L. Zheng, J. Shang, R. Yu, J. Shui, Nat. Commun. 2022, 13, 2963–2974.
- 39L. Peng, J. Yang, Y. Yang, F. Qian, Q. Wang, D. Sun-Waterhouse, L. Shang, T. Zhang, G. I. N. Waterhouse, Adv. Mater. 2022, 34, 2202544.
- 40J. Sun, J. Yang, T. Wang, S. L. Zhang, H. Yuan, W. Zang, Y. Liu, X. Liu, W. Wang, S. Xi, C. H. Kirk, H. Wang, J. Wang, X. Wang, U. Bhat, Z. Liu, S. Wang, Y.-W. Zhang, J. Wang, Nano Lett. 2024, 24, 5206–5213.
- 41Z. Cui, J. Song, M. Chen, W. Wang, W. Zhang, Q. Zhu, Energy Storage Mater. 2024, 71, 103649.
- 42P. Liu, Y. Wang, Q. Gu, J. Nanda, J. Watt, D. Mitlin, Adv. Mater. 2019, 32, 1906735.
- 43Y. Yi, J. Li, Z. Gao, W. Liu, Y. Zhao, M. Wang, W. Zhao, Y. Han, J. Sun, J. Zhang, Adv. Mater. 2022, 34, 2202685.
- 44J. Qi, C. Lin, S. Deng, Y. Zuo, H. Zheng, X. Jiao, W. Yan, J. Zhang, J. Mater. Chem. A 2024, 12, 6968–6982.
- 45D.-T. Zhang, M.-C. Liu, M.-P. Li, Z.-Z. Yuan, Y.-X. Hu, H. Chen, C.-Y. Li, L.-B. Kong, K. Zhao, J.-Q. Ren, B. Liu, Chem. Eng. J. 2024, 482, 148896.
- 46J. Wang, J. Yuan, C. Chen, L. Wang, Z. Zhai, Q. Fu, Y. Liu, L. Dong, W. Yan, A. Li, J. Zhang, Nano Energy 2020, 75, 104914.
- 47J. L. Zhou, L. K. Zhao, Y. Lu, X. W. Gao, Y. Chen, Z. M. Liu, Q. F. Gu, W. B. Luo, Adv. Funct. Mater. 2024, 34, 2403754.
- 48W. Lyu, X. Yu, Y. Lv, A. M. Rao, J. Zhou, B. Lu, Adv. Mater. 2024, 36, 2305795.
- 49P. Liu, H. Hao, A. Singla, B. S. Vishnugopi, J. Watt, P. P. Mukherjee, D. Mitlin, Angew. Chem. Int. Ed. 2024, 63, e202402214.
- 50X. Tang, D. Zhou, P. Li, X. Guo, B. Sun, H. Liu, K. Yan, Y. Gogotsi, G. Wang, Adv. Mater. 2020, 32, 1906739.
- 51R. Zhou, H. Tan, Y. Gao, Z. Hou, X. Du, B. Zhang, Carbon 2022, 186, 141–149.
- 52M. Zhou, W. Qi, Z. Hu, M. Cheng, X. Zhao, P. Xiong, H. Su, M. Li, J. Hu, Y. Xu, ACS Appl. Mater. Interfaces 2021, 13, 17629–17638.
- 53Z. Wang, J.-F. Wu, W. Zhou, Y. Mo, S. Chen, T. Zhou, W. Shen, B. Ren, P. Huang, J. Liu, ACS Energy Lett. 2024, 9, 4534–4543.
- 54R. Kaischew, B. Mutaftchiew, Eleclrochim. Acta. 1965, 28, 879–889.
- 55Z. Li, Y. Zhou, Y. Wang, Y. C. Lu, Adv. Energy Mater. 2018, 9, 1802207.
- 56C. Yan, L. L. Jiang, Y. X. Yao, Y. Lu, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 8521–8525.
- 57Y. Zhao, B. Liu, Y. Yi, X. Lian, M. Wang, S. Li, X. Yang, J. Sun, Adv. Mater. 2022, 34, 2202902.
- 58H. Wang, H. Yuan, W. Wang, L. Shen, J. Sun, X. Liu, J. Yang, X. Wang, T. Wang, N. Wen, Y. Gao, K. Song, D. Chen, S. Wang, Y.-W. Zhang, J. Wang, ACS Nano 2024, 18, 33405–33417.