Janus Superiority of Membranes in Chemical Engineering and Beyond
Corresponding Author
Prof. Hao-Cheng Yang
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058 P.R. China
Both authors contributed equally to this work.
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorYi-Zhou Chen
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorKai Li
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058 P.R. China
Search for more papers by this authorXin-Yu Guo
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
Search for more papers by this authorQi-Rui Jiang
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Seth B. Darling
Center for Molecular Engineering, Chemical Sciences and Engineering Division and Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center, Argonne National Laboratory, Lemont, IL, 60439 USA
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637 USA
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Zhi-Kang Xu
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Hao-Cheng Yang
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058 P.R. China
Both authors contributed equally to this work.
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorYi-Zhou Chen
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorKai Li
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058 P.R. China
Search for more papers by this authorXin-Yu Guo
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
Search for more papers by this authorQi-Rui Jiang
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Seth B. Darling
Center for Molecular Engineering, Chemical Sciences and Engineering Division and Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center, Argonne National Laboratory, Lemont, IL, 60439 USA
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637 USA
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Zhi-Kang Xu
MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 P.R. China
The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
This review explores the Janus superiority of membrane materials in chemical engineering processes, with a focus on their design and fabrication principles, transport mechanisms, and diverse applications. It highlights their roles in chemical engineering and their multiscale impacts and concludes by discussing current challenges and future research directions.
Abstract
Janus configurations, characterized by their inherent asymmetry, enable directional mass transfer in membrane materials that drive novel and energy-efficient chemical processes. This Janus superiority spans applications from nanoscale molecular and ionic transport to macro-scale separation systems with asymmetric spatial architectures. This review provides an analysis of the material foundations including design principles, structure regulation, and scalability challenges underlying Janus membranes. We explore the physics that governs their unique behavior and examine their diverse applications across chemical engineering, including phase transfer, and molecular or ionic transport. Through a multiscale perspective, we provide a comprehensive understanding of the impact of Janus superiority in advancing chemical engineering technologies. Finally, we discuss the hurdles in translating theoretical advances into practical applications and propose promising avenues for future research to harness the full potential of Janus membranes and systems in addressing global challenges related to energy, sustainability, and beyond.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1D. S. Sholl, R. P. Lively, Nature 2016, 532, 435–437.
- 2B. E. Logan, M. Elimelech, Nature 2012, 488, 313–319.
- 3H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, Science 2017, 356, eaab0530.
- 4M. Elimelech, W. A. Phillip, Science 2011, 333, 712–717.
- 5H.-J. Huang, S. Ramaswamy, U. W. Tschirner, B. V. Ramarao, Sep. Purif. Technol. 2008, 62, 1–21.
- 6H.-C. Yang, Y. Xie, J. Hou, A. K. Cheetham, V. Chen, S. B. Darling, Adv. Mater. 2018, 30, 1801495.
- 7J. Gu, P. Xiao, J. Chen, J. Zhang, Y. Huang, T. Chen, ACS Appl. Mater. Interfaces 2014, 6, 16204–16209.
- 8H. Wang, J. Ding, L. Dai, X. Wang, T. Lin, J. Mater. Chem. 2010, 20, 7938–7940.
- 9H.-C. Yang, J. Hou, V. Chen, Z.-K. Xu, Angew. Chemie–Int. Ed. 2016, 55, 13398–13407.
- 10P.-G. de Gennes, Angew. Chem. Int. Ed. 1992, 31, 842–845.
- 11H.-C. Yang, J. Hou, L.-S. Wan, V. Chen, Z.-K. Xu, Adv. Mater. Interfaces 2016, 3, 1500774.
- 12M. B. Wu, H. C. Yang, J. J. Wang, G. P. Wu, Z. K. Xu, ACS Appl. Mater. Interfaces 2017, 9, 5062–5066.
- 13Z. Wang, Y. Wang, G. Liu, Angew. Chemie – Int. Ed. 2016, 55, 1291–1294.
- 14F. Ren, G. Li, Z. Zhang, X. Zhang, H. Fan, C. Zhou, Y. Wang, Y. Zhang, C. Wang, K. Mu, Y. Su, D. Wu, J. Mater. Chem. A 2017, 5, 18403–18408.
- 15Y. Li, Z. Pei, D. Luan, X. W. D. Lou, J. Am. Chem. Soc. 2024, 146, 3343–3351.
- 16H. C. Yang, W. Zhong, J. Hou, V. Chen, Z. K. Xu, J. Memb. Sci. 2017, 523, 1–7.
- 17W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li, L. Zhou, S. Zhu, J. Zhu, Adv. Energy Mater. 2018, 8, 1702884.
- 18Y. Yang, X. Yang, L. Fu, M. Zou, A. Cao, Y. Du, Q. Yuan, C. H. Yan, ACS Energy Lett. 2018, 3, 1165–1171.
- 19Y. Cheng, J. Wang, X. Lu, C. Wang, Nano Energy 2023, 117, 108852.
- 20K. Li, H. N. Li, Y. R. Xue, H. C. Yang, C. Zhang, Z. K. Xu, J. Colloid Interface Sci. 2023, 651, 841–848.
- 21F. Bao, G. Pei, Z. Wu, H. Zhuang, Z. Zhang, Z. Huan, C. Wu, J. Chang, Adv. Funct. Mater. 2020, 30, 2005422.
- 22Z. Qiu, Y. Gao, D. Qi, M. Wu, Z. Mao, J. Wu, Adv. Funct. Mater. 2024, 34, 2311997.
- 23J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, J. Am. Chem. Soc. 2014, 136, 12265–12272.
- 24J. C. Bui, E. W. Lees, D. H. Marin, T. N. Stovall, L. Chen, A. Kusoglu, A. C. Nielander, T. F. Jaramillo, S. W. Boettcher, A. T. Bell, A. Z. Weber, Nat. Chem. Eng. 2024, 1, 45–60.
10.1038/s44286-023-00009-x Google Scholar
- 25H.-J. Peng, D.-W. Wang, J.-Q. Huang, X.-B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Adv. Sci. 2016, 3, 1500268.
- 26D. Chan, Y. Liu, Y. Fan, H. Wang, S. Chen, T. Hao, H. Li, Z. Bai, H. Shao, G. Xing, Y. Zhang, Y. Tang, Energy Environ. Mater. 2023, 6, e12451.
- 27L. Liu, H. Lan, Y. Cui, Q. Tang, J. Bai, X. An, M. Sun, H. Liu, J. Qu, Sci. Adv. 2024, 10, eadn8696.
- 28Z. Ai, Y. Zhao, L. Chen, T. Wen, S. Song, T. Zhang, Sep. Purif. Technol. 2022, 300, 121918.
- 29L. Hou, N. Wang, L. J. Yu, J. Liu, S. Zhang, Z. Cui, S. Li, H. Li, X. Liu, L. Jiang, Y. Zhao, ACS Energy Lett. 2023, 8, 553–564.
- 30Y. P. An, J. Yang, H. C. Yang, M. B. Wu, Z. K. Xu, ACS Appl. Mater. Interfaces 2018, 10, 9832–9840.
- 31H. Wang, H. Zhou, H. Niu, J. Zhang, Y. Du, T. Lin, Adv. Mater. Interfaces 2015, 2, 1400506.
- 32L. Hou, N. Wang, X. Man, Z. Cui, J. Wu, J. Liu, S. Li, Y. Gao, D. Li, L. Jiang, Y. Zhao, ACS Nano 2019, 13, 4124–4132.
- 33M. R. Jamalpour, A. Yadegari, F. Vahdatinia, L. M. Amirabad, S. Jamshidi, S. Shojaei, A. Shokri, E. Moeinifard, M. Omidi, L. Tayebi, Dent. Mater. 2022, 38, 1316–1329.
- 34Z. X. Low, Y. T. Chua, B. M. Ray, D. Mattia, I. S. Metcalfe, D. A. Patterson, J. Memb. Sci. 2017, 523, 596–613.
- 35H. C. Yang, K. J. Liao, H. Huang, Q. Y. Wu, L. S. Wan, Z. K. Xu, J. Mater. Chem. A 2014, 2, 10225–10230.
- 36F. U. Ahmed, S. Sharma, D. D. Purkayastha, ACS Appl. Mater. Interfaces 2024, 16, 42641–42659.
- 37T.-D. Pan, Z.-J. Li, D.-H. Shou, W. Shou, J.-T. Fan, X. Liu, Y. Liu, Adv. Mater. Interfaces 2019, 6, 1901130.
- 38Z. Wang, X. Yang, Z. Cheng, Y. Liu, L. Shao, L. Jiang, Mater. Horiz. 2017, 4, 701–708.
- 39X. Yang, L. Yan, F. Ran, A. Pal, J. Long, L. Shao, J. Memb. Sci. 2019, 576, 9–16.
- 40J. Chen, Y. Liu, D. Guo, M. Cao, L. Jiang, Chem. Commun. 2015, 51, 11872–11875.
- 41X. Tian, H. Jin, J. Sainio, R. H. A. Ras, O. Ikkala, Adv. Funct. Mater. 2014, 24, 6023–6028.
- 42Y. Cai, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Sci. China Technol. Sci. 2021, 64, 2211–2219.
- 43R. Z. Waldman, H. C. Yang, D. J. Mandia, P. F. Nealey, J. W. Elam, S. B. Darling, Adv. Mater. Interfaces 2018, 5, 1800658.
- 44A. He, C. Zhang, Y. Lv, Q. Z. Zhong, X. Yang, Z. K. Xu, Macromol. Rapid Commun. 2016, 37, 1460–1465.
- 45K. Sasaki, M. Tenjimbayashi, K. Manabe, S. Shiratori, ACS Appl. Mater. Interfaces 2016, 8, 651–659.
- 46J. Wang, Y. Zhou, L. Jiang, Accounts Mater. Res. 2023, 4, 86–100.
- 47K. Li, H. C. Yang, H. N. Li, C. Zhang, H. Q. Liang, Z. K. Xu, Small Struct. 2025, 6, 2400470.
- 48J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao, L. Jiang, Soft Matter 2012, 8, 5996–5999.
- 49W. Jia, J. A. Kharraz, J. Sun, A. K. An, Desalination 2021, 520, 115313.
- 50B. Mi, Science 2014, 343, 740–742.
- 51J. Lee, T. Laoui, R. Karnik, Nat. Nanotechnol. 2014, 9, 317–323.
- 52J. W. Elam, D. Routkevitch, P. P. Mardilovich, S. M. George, Chem. Mater. 2003, 15, 3507–3517.
- 53W.-Z. Fang, Y.-Q. Tang, C. Ban, Q. Kang, R. Qiao, W.-Q. Tao, Chem. Eng. J. 2019, 378, 122099.
- 54J. Wu, Z. Yan, Y. Yan, C. Li, J. Dai, ACS Appl. Mater. Interfaces 2022, 14, 49338–49351.
- 55W. A. Phillip, J. Rzayev, M. A. Hillmyer, E. L. Cussler, J. Memb. Sci. 2006, 286, 144–152.
- 56R. E. Beck, J. S. Schultz, Science 1970, 170, 1302–1305.
- 57Z. Ding, R. Ma, A. G. Fane, Desalination 2003, 151, 217–227.
- 58A. H. Persad, C. A. Ward, Chem. Rev. 2016, 116, 7727–7767.
- 59L. R. Fisher, R. A. Gamble, J. Middlehurst, Nature 1981, 290, 575–576.
- 60Q. Yang, P. Z. Sun, L. Fumagalli, Y. V. Stebunov, S. J. Haigh, Z. W. Zhou, I. V. Grigorieva, F. C. Wang, A. K. Geim, Nature 2020, 588, 250–253.
- 61J. M. Montes De Oca, J. Dhanasekaran, A. Córdoba, S. B. Darling, J. J. De Pablo, ACS Nano 2022, 16, 3768–3775.
- 62J. Yang, H. N. Li, Z. X. Chen, A. He, Q. Z. Zhong, Z. K. Xu, J. Mater. Chem. A 2019, 7, 7907–7917.
- 63Z. Wang, X. Wang, J. Xiong, M. Xie, Y. Shuai, Chem. Eng. J. 2024, 498, 155261.
- 64W. Zhang, L. Hu, H. Chen, S. Gao, X. Zhang, J. Jin, J. Mater. Chem. B 2017, 5, 4876–4882.
- 65B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao, Y. Huang, Z. Ma, Q. Zhang, Y. Yang, C. K. Yiu, J. Li, F. Chun, X. Huang, Y. Gao, P. Wu, S. Jia, H. Li, D. Li, Y. Liu, K. Yao, R. Shi, Z. Chen, B. L. Khoo, W. Yang, F. Wang, Z. Zheng, Z. Wang, X. Yu, Nature 2024, 628, 84–92.
- 66B. Xu, A. Li, R. Wang, J. Zhang, Y. Ding, D. Pan, Z. Shen, Adv. Funct. Mater. 2021, 31, 2105265.
- 67T. Yang, S. Wang, H. Yang, H. Gui, Y. Du, F. Liang, Adv. Funct. Mater. 2023, 33, 2214183.
- 68M. Xie, Z. Zhan, W. Xu, C. Zhang, Z. Wang, Mater. Today Phys. 2023, 38, 101246.
- 69H. C. Zhang, Z. X. Kang, Y. X. Wu, Y. Pu, S. K. Jiang, S. Amir, P. Wang, J. T. Fan, Nano Energy 2024, 128, 109919.
- 70M. Zhao, Y. Liu, J. Zhang, H. Jiang, R. Chen, J. Memb. Sci. 2023, 671, 121418.
- 71Y. Chen, Z. Lu, Q. Liu, J. Memb. Sci. 2019, 592, 117384.
- 72C. Sun, R. Zhou, Z. Zhao, B. Bai, J. Phys. Chem. Lett. 2020, 11, 4678–4692.
- 73Y.-X. Huang, Z. Wang, J. Jin, S. Lin, Environ. Sci. Technol. 2017, 51, 13304–13310.
- 74J. Hou, C. Ji, G. Dong, B. Xiao, Y. Ye, V. Chen, J. Mater. Chem. A 2015, 3, 17032–17041.
- 75S. Gao, M. Mohammad, H. C. Yang, J. Xu, K. Liang, J. Hou, V. Chen, ACS Appl. Mater. Interfaces 2017, 9, 42806–42815.
- 76L. N. Rodrigues, K. K. Sirkar, K. R. Weisbrod, J. C. Ahern, U. Beuscher, J. Memb. Sci. 2021, 637, 119633.
- 77Z. Wang, X. Liu, J. Guo, T. A. Sherazi, S. Zhang, S. Li, Chem. Commun. 2019, 55, 14486–14489.
- 78N. G. P. Chew, Y. Zhang, K. Goh, J. S. Ho, R. Xu, R. Wang, ACS Appl. Mater. Interfaces 2019, 11, 25524–25534.
- 79Y. Chen, K.-J. Lu, S. Japip, T.-S. Chung, Environ. Sci. Technol. 2020, 54, 12713–12722.
- 80B. Nie, Y. Meng, S. Niu, L. Gong, Y. Chen, L. Guo, X. Li, Y.-C. Wu, H.-J. Li, W. Zhang, Energy Environ. Sci. 2025, 18, 3502–3525.
- 81H. N. Li, H. C. Yang, C. Y. Zhu, J. Wu, A. Greiner, Z. K. Xu, J. Mater. Chem. A 2022, 10, 20856–20865.
- 82X. Dong, H. Li, L. Gao, C. Chen, X. Shi, Y. Du, H. Deng, Small 2022, 18, 2107156.
- 83Y. Z. Chen, H. C. Yang, H. N. Li, J. H. Xin, C. Zhang, L. S. Wan, Z. K. Xu, Small 2024, 20, 2310952.
- 84Y. Dong, C. Violet, C. Sun, X. Li, Y. Sun, Q. Zheng, C. Tang, M. Elimelech, Nat. Commun. 2025, 16, 2659.
- 85B. Sun, M. Wu, X. Zhao, L. Wang, Y. Jia, Z. Yuan, H. Wu, J. Diao, G. He, X. Jiang, Adv. Funct. Mater. 2024, 34, 2406272.
- 86Y. Li, H. Chen, S. Xiao, M. A. Alibakhshi, C. W. Lo, M. C. Lu, C. Duan, ACS Nano 2019, 13, 3363–3372.
- 87Q. Xia, Y. Pan, B. Liu, X. Zhang, E. Li, T. Shen, S. Li, N. Xu, J. Ding, C. Wang, C. D. Vecitis, G. Gao, Sci. Adv. 2024, 10, eadj3760.
- 88J. H. Zhang, R. Mittapally, G. Lv, G. Chen, Energy Environ. Sci. 2025, 18, 1707–1721.
- 89G. Lv, Y. Tu, J. H. Zhang, G. Chen, Proc. Natl. Acad. Sci 2024, 121, e2320844121.
- 90S. Zhao, C. Jiang, J. Fan, S. Hong, P. Mei, R. Yao, Y. Liu, S. Zhang, H. Li, H. Zhang, C. Sun, Z. Guo, P. Shao, Y. Zhu, J. Zhang, L. Guo, Y. Ma, J. Zhang, X. Feng, F. Wang, H. Wu, B. Wang, Nat. Mater. 2021, 20, 1551–1558.
- 91X. Sheng, Z. Liu, R. Zeng, L. Chen, X. Feng, L. Jiang, J. Am. Chem. Soc. 2017, 139, 12402–12405.
- 92S. Yan, Y. Li, X. Yang, X. Jia, J. Xu, H. Song, Adv. Mater. 2024, 36, 2307967.
- 93H. Huang, R. Shi, X. Zhang, J. Zhao, C. Su, T. Zhang, Angew. Chemie – Int. Ed. 2021, 60, 22963–22969.
- 94Y. Yang, W. Gao, Y. Chang, Z. Zhao, H. Shen, Z. Wang, T. Li, S. Zhao, Cell Reports Phys. Sci. 2023, 4, 101677.
- 95J. Liu, D. Hua, Y. Zhang, S. Japip, T. Chung, Adv. Mater. 2018, 30, 1705933.
- 96M. R. Puhan, P. Sarkar, R. Amal, G. Nagendraprasad, K. A. Reddy, B. Sutariya, S. Karan, Adv. Mater. 2024, 36, 2404164.
- 97M. Wu, Z. Li, Z. Yuan, H. Jiang, Y. Niu, X. Ruan, X. Yan, X. Li, X. Wu, G. He, X. Jiang, Adv. Funct. Mater. 2023, 33, 2210074.
- 98L.-J. Cheng, L. J. Guo, Chem. Soc. Rev. 2010, 39, 923–938.
- 99I. Vlassiouk, Z. S. Siwy, Nano Lett. 2007, 7, 552–556.
- 100Z. Zhang, X.-Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, L. Jiang, J. Am. Chem. Soc. 2015, 137, 14765–14772.
- 101X. Zhu, J. Hao, B. Bao, Y. Zhou, H. Zhang, J. Pang, Z. Jiang, L. Jiang, Sci. Adv. 2025, 4, eaau1665.
10.1126/sciadv.aau1665 Google Scholar
- 102W. Xin, L. Jiang, L. Wen, Acc. Chem. Res. 2021, 54, 4154–4165.
- 103J. Yang, P. Liu, X. He, J. Hou, Y. Feng, Z. Huang, L. Yu, L. Li, Z. Tang, Angew. Chemie – Int. Ed. 2020, 59, 6244–6248.
- 104S. Liu, C. Wu, W.-S. Hung, X. Lu, K.-R. Lee, J. Mater. Chem. A 2017, 5, 22988–22996.
- 105R. Zheng, S. Xu, S. Zhong, X. Tong, X. Yu, Y. Zhao, Y. Chen, Environ. Sci. Technol. 2024, 58, 22818–22828.
- 106X. Y. Guo, L. Zhao, H. N. Li, H. C. Yang, J. Wu, H. Q. Liang, C. Zhang, Z. K. Xu, Science 2024, 386, 654–659.
- 107J. Ji, Q. Kang, Y. Zhou, Y. Feng, X. Chen, J. Yuan, W. Guo, Y. Wei, L. Jiang, Adv. Funct. Mater. 2017, 27, 1603623.
- 108L. Gou, M. Qiu, W. Ke, X. Chen, Y. Fan, Sep. Purif. Technol. 2024, 334, 126073.
- 109R. Zhu, H.-N. Li, X.-Y. Xia, X.-Y. Guo, X.-J. Huang, C. Zhang, H.-Q. Liang, H.-C. Yang, Z.-K. Xu, Sep. Purif. Technol. 2025, 359, 130552.
- 110Y. Zhao, M. Sun, X. Wang, C. Wang, D. Lu, W. Ma, S. A. Kube, J. Ma, M. Elimelech, Nat. Commun. 2020, 11, 6228.
- 111W. Zhou, P. Xiao, T. Chen, Acc. Mater. Res. 2023, 4, 334–347.
- 112P. Xiao, Y. Liang, J. He, L. Zhang, S. Wang, J. Gu, J. Zhang, Y. Huang, S.-W. Kuo, T. Chen, ACS Nano 2019, 13, 4368–4378.
- 113X. Wang, S. Li, P. Xiao, J. He, W. Zhou, Q. Wang, S. Zhu, P. Wei, T. Chen, Chem. Mater. 2022, 34, 5980–5990.
- 114D. Zhang, J. Liu, B. Chen, Y. Zhao, J. Wang, T. Ikeda, L. Jiang, ACS Nano 2018, 12, 12149–12158.
- 115A. Noy, S. B. Darling, Science 2023, 379, 143–144.
- 116A. Noy, Z. Li, S. B. Darling, Nano Today 2023, 53, 102043.