Carbon Dot Synthesis and Purification: Trends, Challenges and Recommendations
Corresponding Author
Dr. Yalei Hu
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorOcéane Seivert
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorYue Tang
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorDr. Hüseyin Enis Karahan
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Data curation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Dr. Alberto Bianco
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Dr. Yalei Hu
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorOcéane Seivert
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorYue Tang
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorDr. Hüseyin Enis Karahan
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Data curation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Dr. Alberto Bianco
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
This Review analyzes the current trends and challenges in the synthesis and purification of carbon dots prepared through various methods and using a wide variety of precursors. Diverse purification techniques, including centrifugation, filtration, dialysis, column chromatography, and electrophoresis, are systematically and thoroughly described, along with pointing out the gaps in the synthesis, purification, and assessment of CD purity.
Abstract
Carbon dots (CDs) have rapidly emerged as a new family of carbon-based nanomaterials since their initial discovery two decades ago. Numerous appealing properties, such as precursor and synthesis process flexibility, tunable photoluminescence, and good biocompatibility, have enabled their widespread applications in sensing, catalysis, energy, and biomedical fields. As the field expands, notable efforts have recently focused on mechanistically elucidating the structural formation and optical behavior of CDs. However, the absence of “clean” CDs presents a major obstacle to achieving a solid understanding of these aspects. Often, the claimed CDs are, in fact, a mixture of small molecules, oligomers, nano-sized aggregates, or even microparticles. Such coexistence of impurities markedly impacts the physicochemical properties of resulting CD-based mixtures, hampering the resolution of key mechanistic questions. Here, we aim to address this fundamental shortcoming of the field, going beyond the customary focus of the existing reviews that predominantly cover synthesis, optical performance, and application prospects. We begin with an overview of CD synthesis and then thoroughly examine the purification methods, including filtration, dialysis, electrophoresis, and chromatography. The insights provided here will guide the researchers towards obtaining high-quality CDs, employing proper combinations of available tools, and ultimately paving the way for more demanding applications.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202412341-sup-0001-misc_information.pdf445.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Liu, X. Zhong, Q. Pan, Y. Zhang, W. Deng, G. Zou, H. Hou, X. Ji, Coord. Chem. Rev. 2024, 498, 215468;
- 1bB. Wang, G. I. N. Waterhouse, S. Lu, Trends Chem. 2023, 5, 76–87;
- 1cZ. Chen, Y. Liu, Z. Kang, Acc. Chem. Res. 2022, 55, 3110–3124;
- 1dY. Liu, H. Huang, W. Cao, B. Mao, Y. Liu, Z. Kang, Mater. Chem. Front. 2020, 4, 1586–1613.
- 2X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 2004, 126, 12736–12737.
- 3Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, S.-Y. Xie, J. Am. Chem. Soc. 2006, 128, 7756–7757.
- 4
- 4aL. Xiao, H. Sun, Nanoscale Horiz. 2018, 3, 565–597;
- 4bJ. Vinoth Kumar, G. Kavitha, R. Arulmozhi, V. Arul, S. Singaravadivel, N. Abirami, J. Fluoresc. 2021, 31, 915–932.
- 5
- 5aL. Ðorđević, F. Arcudi, M. Cacioppo, M. Prato, Nat. Nanotechnol. 2022, 17, 112–130;
- 5bC. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Adv. Sci. 2019, 6, 1901316;
- 5cY. J. Chung, J. Kim, C. B. Park, ACS Nano 2020, 14, 6470–6497;
- 5dY. Zhai, B. Zhang, R. Shi, S. Zhang, Y. Liu, B. Wang, K. Zhang, G. I. N. Waterhouse, T. Zhang, S. Lu, Adv. Energy Mater. 2022, 12, 2103426.
- 6
- 6aW. Meng, X. Bai, B. Wang, Z. Liu, S. Lu, B. Yang, Energy Environ. Mater. 2019, 2, 172–192;
- 6bL. Chen, C.-F. Wang, C. Liu, S. Chen, Small 2023, 19, 2206671.
- 7B. Yao, H. Huang, Y. Liu, Z. Kang, Trends Chem. 2019, 1, 235–246.
- 8
- 8aY. Wang, T. Lv, K. Yin, N. Feng, X. Sun, J. Zhou, H. Li, Small 2023, 19, 2207048;
- 8bM. Sbacchi, M. Mamone, L. Morbiato, P. Gobbo, G. Filippini, M. Prato, ChemCatChem 2023, 15, e202300667;
- 8cH. Ding, B. Hu, B. Zhang, H. Zhang, X. Yan, G. Nie, M. Liang, Nano Res. 2021, 14, 570–583;
- 8dJ. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Science 2015, 347, 970–974.
- 9
- 9aY. Xu, C. Wang, H. Zhuo, D. Zhou, Q. Song, Nano Res. 2023, 16, 11221–11249;
- 9bB. Bartolomei, J. Dosso, M. Prato, Trends Chem. 2021, 3, 943–953;
- 9cA. U. Khan, Y. Liu, S. Wang, M. W. Ullah, Q. Chen, D. Zhang, Z. Kang, B. Mao, Sustain. Mater. Technol. 2024, 41, e01004.
- 10J. Liu, R. Li, B. Yang, ACS Cent. Sci. 2020, 6, 2179–2195.
- 11H. Sun, H. Ji, E. Ju, Y. Guan, J. Ren, X. Qu, Chem. Eur. J. 2015, 21, 3791–3797.
- 12T. J. Pillar-Little, N. Wanninayake, L. Nease, D. K. Heidary, E. C. Glazer, D. Y. Kim, Carbon 2018, 140, 616–623.
- 13F. Arcudi, L. Đorđević, M. Prato, Angew. Chem. Int. Ed. 2017, 56, 4170–4173.
- 14Y. Choi, Y. Choi, O.-H. Kwon, B.-S. Kim, Chem. Asian J. 2018, 13, 586–598.
- 15Z. Zhu, R. Cheng, L. Ling, Q. Li, S. Chen, Angew. Chem. Int. Ed. 2020, 59, 3099–3105.
- 16I.-A. Baragau, N. P. Power, D. J. Morgan, T. Heil, R. A. Lobo, C. S. Roberts, M.-M. Titirici, S. Dunn, S. Kellici, J. Mater. Chem. A 2020, 8, 3270–3279.
- 17Y. Han, B. Tang, L. Wang, H. Bao, Y. Lu, C. Guan, L. Zhang, M. Le, Z. Liu, M. Wu, ACS Nano 2020, 14, 14761–14768.
- 18C. Campalani, D. Rigo, Next Sustain. 2023, 1, 100001.
10.1016/j.nxsust.2023.100001 Google Scholar
- 19X.-Y. Wang, B.-B. Chen, J. Zhang, Z.-R. Zhou, J. Lv, X.-P. Geng, R.-C. Qian, Chem. Commun. 2021, 57, 532–535.
- 20Q. Hong, X.-Y. Wang, Y.-T. Gao, J. Lv, B.-B. Chen, D.-W. Li, R.-C. Qian, Chem. Mater. 2022, 34, 998–1009.
- 21
- 21aN. Javed, D. M. O′Carroll, Nanoscale Adv. 2021, 3, 182–189;
- 21bL. Li, T. Dong, J. Mater. Chem. C 2018, 6, 7944–7970.
- 22C. He, P. Xu, X. Zhang, W. Long, Carbon 2022, 186, 91–127.
- 23X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo, J. Zhang, ACS Nano 2012, 6, 6592–6599.
- 24F. Arcudi, L. Đorđević, M. Prato, Acc. Chem. Res. 2019, 52, 2070–2079.
- 25Y. Xiong, J. Schneider, E. V. Ushakova, A. L. Rogach, Nano Today 2018, 23, 124–139.
- 26M. Langer, T. Hrivnák, M. Medved’, M. Otyepka, J. Phys. Chem. C 2021, 125, 12140–12148.
- 27
- 27aD. A. Sousa, M. N. Berberan-Santos, J. V. Prata, Chem. Eur. J. 2024, 30, e202302955;
- 27bJ. Yang, L. Guo, X. Yong, T. Zhang, B. Wang, H. Song, Y. S. Zhao, H. Hou, B. Yang, J. Ding, S. Lu, Angew. Chem. Int. Ed. 2022, 61, e202207817.
- 28
- 28aB. Wang, S. Lu, Matter 2022, 5, 110–149;
- 28bS. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, Nano Res. 2015, 8, 355–381.
- 29
- 29aS. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, Angew. Chem. Int. Ed. 2012, 51, 12215–12218;
- 29bR. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E. L. G. Samuel, C.-C. Hwang, G. Ruan, G. Ceriotti, A.-R. O. Raji, A. A. Martí, J. M. Tour, Nat. Commun. 2013, 4, 2943.
- 30S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Angew. Chem. Int. Ed. 2013, 52, 3953–3957.
- 31K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Angew. Chem. Int. Ed. 2015, 54, 5360–5363.
- 32
- 32aX. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao, H. Fan, Z. Sun, Adv. Mater. 2018, 30, 1704740;
- 32bY. Li, C. Liu, H. Sun, M. Chen, D. Hou, Y. Zheng, H. Xie, B. Zhou, X. Lin, Adv. Sci. 2023, 10, 2300543;
- 32cN. Ullal, R. Mehta, D. Sunil, Analyst 2024, 149, 1680–1700.
- 33R. M. S. Sendão, D. M. A. Crista, A. C. P. Afonso, M. d. V. Martínez de Yuso, M. Algarra, J. C. G. Esteves da Silva, L. Pinto da Silva, Phys. Chem. Chem. Phys. 2019, 21, 20919–20926.
- 34S.-T. Yang, L. Cao, P. G. Luo, F. Lu, X. Wang, H. Wang, M. J. Meziani, Y. Liu, G. Qi, Y.-P. Sun, J. Am. Chem. Soc. 2009, 131, 11308–11309.
- 35D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Nanoscale 2013, 5, 12272–12277.
- 36L. Wu, X. Cai, K. Nelson, W. Xing, J. Xia, R. Zhang, A. J. Stacy, M. Luderer, G. M. Lanza, L. V. Wang, B. Shen, D. Pan, Nano Res. 2013, 6, 312–325.
- 37J. Wu, J. H. Lei, B. He, C.-X. Deng, Z. Tang, S. Qu, Aggregate 2021, 2, e139.
- 38N. Soni, S. Singh, S. Sharma, G. Batra, K. Kaushik, C. Rao, N. C. Verma, B. Mondal, A. Yadav, C. K. Nandi, Chem. Sci. 2021, 12, 3615–3626.
- 39C. Zhu, J. Zhai, S. Dong, Chem. Commun. 2012, 48, 9367–9369.
- 40L. Wang, H. S. Zhou, Anal. Chem. 2014, 86, 8902–8905.
- 41Y. Ru, L. Sui, H. Song, X. Liu, Z. Tang, S.-Q. Zang, B. Yang, S. Lu, Angew. Chem. Int. Ed. 2021, 60, 14091–14099.
- 42B. La Ferla, B. Vercelli, Nanomaterials 2023, 13, 1635.
- 43M. Otten, M. Hildebrandt, R. Kühnemuth, M. Karg, Langmuir 2022, 38, 6148–6157.
- 44J. B. Essner, J. A. Kist, L. Polo-Parada, G. A. Baker, Chem. Mater. 2018, 30, 1878–1887.
- 45L. Jiang, H. Ding, S. Lu, T. Geng, G. Xiao, B. Zou, H. Bi, Angew. Chem. Int. Ed. 2020, 59, 9986–9991.
- 46Y. Liu, J. H. Lei, G. Wang, Z. Zhang, J. Wu, B. Zhang, H. Zhang, E. Liu, L. Wang, T.-M. Liu, G. Xing, D. Ouyang, C.-X. Deng, Z. Tang, S. Qu, Adv. Sci. 2022, 9, 2202283.
- 47C.-Y. Chen, Y.-H. Tsai, C.-W. Chang, New J. Chem. 2019, 43, 6153–6159.
- 48Y.-C. Liang, K.-K. Liu, X.-Y. Wu, Q. Lou, L.-Z. Sui, L. Dong, K.-J. Yuan, C.-X. Shan, Adv. Sci. 2021, 8, 2003433.
- 49J. Guo, Y. Lu, A.-Q. Xie, G. Li, Z.-B. Liang, C.-F. Wang, X. Yang, S. Chen, Adv. Funct. Mater. 2022, 32, 2110393.
- 50F. Li, Y. Li, X. Yang, X. Han, Y. Jiao, T. Wei, D. Yang, H. Xu, G. Nie, Angew. Chem. Int. Ed. 2018, 57, 2377–2382.
- 51F. Rigodanza, L. Đorđević, F. Arcudi, M. Prato, Angew. Chem. Int. Ed. 2018, 57, 5062–5067.
- 52W. Kasprzyk, T. Świergosz, S. Bednarz, K. Walas, N. V. Bashmakova, D. Bogdał, Nanoscale 2018, 10, 13889–13894.
- 53Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang, X. Zhao, B. Yang, J. Mater. Chem. C 2015, 3, 5976–5984.
- 54Z. Bian, A. Wallum, A. Mehmood, E. Gomez, Z. Wang, S. Pandit, S. Nie, S. Link, B. G. Levine, M. Gruebele, ACS Nano 2023, 17, 22788–22799.
- 55H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, ACS Nano 2016, 10, 484–491.
- 56H. Guo, S. Wen, W. Li, M. Li, L. Wang, Q. Chang, J. Zhang, J. Lai, R. Vajtai, P. M. Ajayan, M. Wu, Appl. Mater. Today 2020, 18, 100528.
- 57A. A. Kokorina, E. S. Prikhozhdenko, N. V. Tarakina, A. V. Sapelkin, G. B. Sukhorukov, I. Y. Goryacheva, Carbon 2018, 127, 541–547.
- 58Y. Zhou, E. M. Zahran, B. A. Quiroga, J. Perez, K. J. Mintz, Z. Peng, P. Y. Liyanage, R. R. Pandey, C. C. Chusuei, R. M. Leblanc, Appl. Catal. B 2019, 248, 157–166.
- 59J. C. Vinci, L. A. Colon, Anal. Chem. 2012, 84, 1178–1183.
- 60J. C. Vinci, I. M. Ferrer, S. J. Seedhouse, A. K. Bourdon, J. M. Reynard, B. A. Foster, F. V. Bright, L. A. Colón, J. Phys. Chem. Lett. 2013, 4, 239–243.
- 61F. Ehrat, S. Bhattacharyya, J. Schneider, A. Löf, R. Wyrwich, A. L. Rogach, J. K. Stolarczyk, A. S. Urban, J. Feldmann, Nano Lett. 2017, 17, 7710–7716.
- 62
- 62aA. A. Kokorina, A. A. Bakal, D. V. Shpuntova, A. Y. Kostritskiy, N. V. Beloglazova, S. De Saeger, G. B. Sukhorukov, A. V. Sapelkin, I. Y. Goryacheva, Sci. Rep. 2019, 9, 14665;
- 62bH. Liu, T. Ye, C. Mao, Angew. Chem. Int. Ed. 2007, 46, 6473–6475.
- 63A. Beiraghi, S. A. Najibi-Gehraz, J. Nanostruct. 2020, 10, 107–118.
- 64J. Liu, T. Kong, H.-M. Xiong, Adv. Mater. 2022, 34, 2200152.
- 65P. Uthirakumar, M. Devendiran, T. H. Kim, I.-H. Lee, New J. Chem. 2018, 42, 18312–18317.
- 66A. Koutsioukis, A. Akouros, R. Zboril, V. Georgakilas, Nanoscale 2018, 10, 11293–11296.
- 67J. Zhan, R. Peng, S. Wei, J. Chen, X. Peng, B. Xiao, ACS Omega 2019, 4, 22574–22580.
- 68B. Bartolomei, V. Corti, M. Prato, Angew. Chem. Int. Ed. 2023, 62, e202305460.
- 69L. Li, Y. Li, Y. Ye, R. Guo, A. Wang, G. Zou, H. Hou, X. Ji, ACS Nano 2021, 15, 6872–6885.
- 70
- 70aB. Bartolomei, A. Bogo, F. Amato, G. Ragazzon, M. Prato, Angew. Chem. Int. Ed. 2022, 61, e202200038;
- 70bB. Bartolomei, M. Prato, Small 2023, 19, 2206714.