Construction of Highly Porous and Robust Hydrogen-Bonded Organic Framework for High-Capacity Clean Energy Gas Storage
Jia-Xin Wang
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Xu Zhang
Jiangsu Engineering Laboratory for Environmental Functional Materials School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300 China
These authors contributed equally to this work.
Search for more papers by this authorChenghao Jiang
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorTeng-Fei Zhang
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJiyan Pei
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Wei Zhou
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899–6102 USA
Search for more papers by this authorDr. Taner Yildirim
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899–6102 USA
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, 350007 China
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 China
Search for more papers by this authorProf. Guodong Qian
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJia-Xin Wang
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Xu Zhang
Jiangsu Engineering Laboratory for Environmental Functional Materials School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300 China
These authors contributed equally to this work.
Search for more papers by this authorChenghao Jiang
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorTeng-Fei Zhang
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJiyan Pei
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Wei Zhou
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899–6102 USA
Search for more papers by this authorDr. Taner Yildirim
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899–6102 USA
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, 350007 China
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 China
Search for more papers by this authorProf. Guodong Qian
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorGraphical Abstract
Abstract
Development of highly porous and robust hydrogen-bonded organic frameworks (HOFs) for high-pressure methane and hydrogen storage remains a grand challenge due to the fragile nature of hydrogen bonds. Herein, we report a strategy of constructing the double-walled framework to target highly porous and robust HOF (ZJU-HOF-5a) for extraordinary CH4 and H2 storage. ZJU-HOF-5a features a minimized twofold interpenetration with double-walled structure, in which multiple supramolecular interactions are existed between the interpenetrated walls. This structural configuration can notably enhance the framework robustness while maintaining its high porosity, affording one of the highest gravimetric and volumetric surface areas of 3102 m2 g−1 and 1976 m2 cm−3 among the reported HOFs so far. ZJU-HOF-5a thus exhibits an extremely high volumetric H2 uptake of 43.6 g L−1 at 77 K/100 bar and working capacity of 41.3 g L−1 under combined swing conditions (77 K/100 bar→160 K/5 bar), and also impressive methane storage performance with a 5–100 bar working capacity of 187 (or 159) cm3 (STP) cm−3 at 270 K (or 296 K), outperforming most of the reported porous organic materials. Single-crystal X-ray diffraction studies on CH4-loaded ZJU-HOF-5a reveal that abundant supramolecular binding sites combined with ultrahigh porosities account for its high CH4 storage capacities. Combined with high stability, super-hydrophobicity, and easy recovery, ZJU-HOF-5a is placed among the most promising materials for H2 and CH4 storage applications.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202411753-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16–22.
- 2T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Nat. Rev. Mater. 2016, 1, 16059.
- 3K. V. Kumar, K. Preuss, M.-M. Titirici, F. Rodríguez-Reinoso, Chem. Rev. 2017, 117, 1796–1825.
- 4
- 4aP. García-Holley, B. Schweitzer, T. Islamoglu, Y. Liu, L. Lin, S. Rodriguez, M. H. Weston, J. T. Hupp, D. A. Gómez-Gualdrón, T. Yildirim, O. K. Farha, ACS Energy Lett. 2018, 3, 748–754;
- 4bB. Li, H.-M. Wen, W. Zhou, J. Q. Xu, B. Chen, Chem 2016, 1, 557–580;
- 4cD. Yuan, W. Lu, D. Zhao, H.-C. Zhou, Adv. Mater. 2011, 23, 3723–3725.
- 5
- 5aMethane opportunities for vehicular energy (MOVE), advanced research project agency-energy, U. S. Department of Energy, Funding Opportunity No. DE-FOA-0000672, https://arpa-e-foa.energy.gov/Default.aspx?Search=DE-FOA-0000672;
- 5bTarget explanation document: onboard hydrogen storage for light-duty fuel cell vehicles, U. S. Department of Energy, https://www.energy.gov/sites/default/files/2017/05/f34/fcto_targets_onboard_hydro_storage_explanation.pdf.
- 6
- 6aS. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, H.-C. Zhou, J. Am. Chem. Soc. 2008, 130, 1012–1016;
- 6bH. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424–428;
- 6cC. E. Wilmer, O. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr, J. T. Hupp, Energy Environ. Sci. 2013, 6, 1158–1163;
- 6dB. Li, H.-M. Wen, H. Wang, H. Wu, M. Tyagi, T. Yildirim, W. Zhou, B. Chen, J. Am. Chem. Soc. 2014, 136, 6207–6210.
- 7
- 7aZ. Chen, P. Li, R. Anderson, X. Wang, X. Zhang, L. Robison, L. R. Redfern, S. Moribe, T. Islamoglu, D. A. Gómez-Gualdrón, T. Yildirim, J. F. Stoddart, O. K. Farha, Science 2020, 368, 297–303;
- 7bY. Yan, D. I. Kolokolov, I. da Silva, A. G. Stepanov, A. J. Blake, A. Dailly, P. Manuel, C. C. Tang, S. Yang, M. Schröder, J. Am. Chem. Soc. 2017, 139, 13349–13360;
- 7cD. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, Ł. J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A.-H. Emwas, M. Eddaoudi, J. Am. Chem. Soc. 2015, 137, 13308–13318;
- 7dH.-M. Wen, B. Li, L. Li, R.-B. Lin, W. Zhou, G. Qian, B. Chen, Adv. Mater. 2018, 30, 1704792.
- 8
- 8aY. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 2014, 43, 5657–5678;
- 8bY. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li, H.-C. Zhou, Chem. Soc. Rev. 2016, 45, 2327–2367;
- 8cJ. J. Perry IV, J. A. Permana, M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400–1417;
- 8dK. Suresh, D. Aulakh, J. Purewal, D. J. Siegel, M. Veenstra, A. J. Matzger, J. Am. Chem. Soc. 2021, 143, 10727–10734.
- 9
- 9aJ. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi, J. R. Long, Nature 2015, 527, 357–361;
- 9bZ. Chen, K. O. Kirlikovali, K. B. Idrees, M. C. Wasson, O. K. Farha, Chem 2022, 8, 693–716;
- 9cK. Koupepidou, V. I. Nikolayenko, D. Sensharma, A. A. Bezrukov, M. Vandichel, S. J. Nikkhah, D. C. Castell, K. A. Oyekan, N. Kumar, A. Subanbekova, W. G. Vandenberghe, K. Tan, L. J. Barbour, M. J. Zaworotko, J. Am. Chem. Soc. 2023, 145, 10197–10207;
- 9dK. Nath, K. R. Wright, A. Ahmed, D. J. Siegel, A. J. Matzger, J. Am. Chem. Soc. 2024, 146, 10517–10523.
- 10
- 10aM. E. Casco, M. Martínez-Escandell, E. Gadea-Ramos, K. Kaneko, J. Silvestre-Albero, F. Rodríguez-Reinoso, Chem. Mater. 2015, 27, 959–964;
- 10bN. Albeladi, L. S. Blankenship, R. Mokaya, Energy Environ. Sci. 2024, 17, 3060–3076.
- 11
- 11aS. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580–11581;
- 11bH. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875–8883.
- 12Y.-B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gándara, A. Duong, X. Zou, O. M. Yaghi, J. Am. Chem. Soc. 2013, 135, 16336–16339.
- 13
- 13aD. Venkataraman, S. Lee, J. Zhang, J. S. Moore, Nature 1994, 371, 591–593;
- 13bM. Simard, D. Su, J. D. Wuest, J. Am. Chem. Soc. 1991, 113, 4696–4698;
- 13cR.-B. Lin, Y. He, P. Li, H. Wang, W. Zhou, B. Chen, Chem. Soc. Rev. 2019, 48, 1362–1389;
- 13dI. Hisaki, C. Xin, K. Takahashi, T. Nakamura, Angew. Chem. Int. Ed. 2019, 58, 11160–11170.
- 14
- 14aY. He, S. Xiang, B. Chen, J. Am. Chem. Soc. 2011, 133, 14570–14573;
- 14bA. Karmakar, R. Illathvalappil, B. Anothumakkool, A. Sen, P. Samanta, A. V. Desai, S. Kurungot, S. K. Ghosh, Angew. Chem. Int. Ed. 2016, 55, 10667–10671.
- 15
- 15aH. Yamagishi, H. Sato, A. Hori, Y. Sato, R. Matsuda, K. Kato, T. Aida, Science 2018, 361, 1242–1246;
- 15bT. Takeda, M. Ozawa, T. Akutagawa, Angew. Chem. Int. Ed. 2019, 58, 10345–10352;
- 15cF. Hu, C. Liu, M. Wu, J. Pang, F. Jiang, D. Yuan, M. Hong, Angew. Chem. Int. Ed. 2017, 56, 2101–2104.
- 16
- 16aA. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little, S. Y. Chong, B. J. Slater, D. P. McMahon, B. Bonillo, C. J. Stackhouse, A. Stephenson, C. M. Kane, R. Clowes, T. Hasell, A. I. Cooper, G. M. Day, Nature 2017, 543, 657–664;
- 16bC. E. Shields, X. Wang, T. Fellowes, R. Clowes, L. Chen, G. M. Day, A. G. Slater, J. W. Ward, M. A. Little, A. I. Cooper, Angew. Chem. Int. Ed. 2023, e202303167.
- 17
- 17aW. Yang, A. Greenaway, X. Lin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, P. Hubberstey, S. Kitagawa, N. R. Champness, M. Schröder, J. Am. Chem. Soc. 2010, 132, 14457–14469;
- 17bJ. Lü, C. Perez-Krap, M. Suyetin, N. H. Alsmail, Y. Yan, S. Yang, W. Lewis, E. Bichoutskaia, C. C. Tang, A. J. Blake, R. Cao, M. Schröder, J. Am. Chem. Soc. 2014, 136, 12828–12831.
- 18
- 18aB. Wang, R.-B. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2020, 142, 14399–14416;
- 18bW. Liang, F. Carraro, M. B. Solomon, S. G. Bell, H. Amenitsch, C. J. Sumby, N. G. White, P. Falcaro, C. J. Doonan, J. Am. Chem. Soc. 2019, 141, 14298–14305;
- 18cJ. Gao, Y. Cai, X. Qian, P. Liu, H. Wu, W. Zhou, D.-X. Liu, L. Li, R.-B. Lin, B. Chen, Angew. Chem. Int. Ed. 2021, 60, 20400–20406;
- 18dY. Chen, Y. Yang, Y. Wang, Q. Xiong, J. Yang, S. Xiang, L. Li, J. Li, Z. Zhang, B. Chen, J. Am. Chem. Soc. 2022, 144, 17033–17040.
- 19
- 19aP. Li, M. R. Ryder, J. F. Stoddart, Acc. Mater. Res. 2020, 1, 77–87;
- 19bZ.-J. Lin, S. A. R. Mahammed, T.-F. Liu, R. Cao, ACS Cent. Sci. 2022, 8, 1589–1608;
- 19cY. Zhou, C. Chen, R. Krishna, Z. Ji, D. Yuan, M. Wu, Angew. Chem. Int. Ed. 2023, 62, e202305041;
- 19dC. Jiang, J.-X. Wang, D. Liu, E. Wu, X.-W. Gu, X. Zhang, B. Li, B. Chen, G. Qian, Angew. Chem. Int. Ed. 2024, 63, e202404734.
- 20
- 20aI. Hisaki, Y. Suzuki, E. Gomez, B. Cohen, N. Tohnai, A. Douhal, Angew. Chem. Int. Ed. 2018, 57, 12650–12655;
- 20bB. Han, H. Wang, C. Wang, H. Wu, W. Zhou, B. Chen, J. Jiang, J. Am. Chem. Soc. 2019, 141, 8737–8740;
- 20cX. Song, Y. Wang, C. Wang, D. Wang, G. Zhuang, K. O. Kirlikovali, P. Li, O. K. Farha, J. Am. Chem. Soc. 2022, 144, 10663–10687;
- 20dX. Zhang, L. Li, J.-X. Wang, H.-M. Wen, R. Krishna, H. Wu, W. Zhou, Z.-N. Chen, B. Li, G. Qian, B. Chen, J. Am. Chem. Soc. 2020, 142, 633–640;
- 20eH. Li, C. Chen, Q. Li, X. J. Kong, Y. Liu, Z. Ji, S. Zou, M. Hong, M. Wu, Angew. Chem. Int. Ed. 2024, 63, e202401754.
- 21
- 21aX.-Z. Luo, X.-J. Jia, J.-H. Deng, J.-L. Zhong, H.-J. Liu, K.-J. Wang, D.-C. Zhong, J. Am. Chem. Soc. 2013, 135, 11684–11687;
- 21bT.-H. Chen, I. Popov, W. Kaveevivitchai, Y.-C. Chuang, Y.-S. Chen, O. Daugulis, A. J. Jacobson, O. Š Miljanić, Nat. Commun. 2014, 5, 5131;
- 21cX.-L. Lv, S. Yuan, L.-H. Xie, H. F. Darke, Y. Chen, T. He, C. Dong, B. Wang, Y.-Z. Zhang, J.-R. Li, H.-C. Zhou, J. Am. Chem. Soc. 2019, 141, 10283–10293;
- 21dJ. Li, P. Liu, Y. Chen, J. Zhou, J. Li, J. Yang, D. Zhang, J. Li, L. Li, J. Am. Chem. Soc. 2023, 145, 19707–19714.
- 22
- 22aH. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018–1023;
- 22bB. Li, H.-M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen, Adv. Mater. 2016, 28, 8819–8860;
- 22cH. Wang, Y. Liu, J. Li, Adv. Mater. 2020, 32, 2002603;
- 22dW. Fan, X. Zhang, Z. Kang, X. Liu, D. Sun, Coord. Chem. Rev. 2021, 443, 213968.
- 23
- 23aS.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548–568;
- 23bX. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010–6022;
- 23cS. Tao, H. Xu, Q. Xu, Y. Hijikata, Q. Jiang, S. Irle, D. Jiang, J. Am. Chem. Soc. 2021, 143, 8970–8975;
- 23dC. He, S. Tao, R. Liu, Y. Zhi, D. Jiang, Angew. Chem. Int. Ed. 2024, 63, e202403472.
- 24
- 24aC. A. Zentner, H. W. H. Lai, J. T. Greenfield, R. A. Wiscons, M. Zeller, C. F. Campana, O. Talu, S A FitzGerald, J. L. C. Rowsell, Chem. Commun. 2015, 51, 11642–11645;
- 24bI. Bassanetti, S. Bracco, A. Comotti, M. Negroni, C. Bezuidenhout, S. Canossa, P. P. Mazzeo, L. Marchió, P. Sozzani, J. Mater. Chem. A 2018, 6, 14231–14239;
- 24cY. Yang, L. Li, R.-B. Lin, Y. Ye, Z. Yao, L. Yang, F. Xiang, S. Chen, Z. Zhang, S. Xiang, B. Chen, Nat. Chem. 2021, 13, 933–939.
- 25
- 25aY.-L. Li, E. V. Alexandrov, Q. Yin, L. Li, Z.-B. Fang, W. Yuan, D. M. Proserpio, T.-F. Liu, J. Am. Chem. Soc. 2020, 142, 7218–7224;
- 25bQ. Zhu, J. Johal, D. E. Widdowson, Z. Pang, B. Li, C. M. Kane, V. Kurlin, G. M. Day, M. A. Little, A. I. Cooper, J. Am. Chem. Soc. 2022, 144, 9893–9901;
- 25cP. Li, Z. Chen, M. R. Ryder, C. L. Stern, Q.-H. Guo, X. Wang, O. K. Farha, J. F. Stoddart, J. Am. Chem. Soc. 2019, 141, 12998–13002;
- 25dP. Li, P. Li, M. R. Ryder, Z. Liu, C. L. Stern, O. K. Farha, J. F. Stoddart, Angew. Chem. Int. Ed. 2019, 58, 1664–1669.
- 26
- 26aM. Mastalerz, I. M. Oppel, Angew. Chem. Int. Ed. 2012, 51, 5252–5255;
- 26bM. I. Hashim, H. T. M. Le, T.-H. Chen, Y.-S. Chen, O. Daugulis, C.-W. Hsu, A. J. Jacobson, W. Kaveevivitchai, X. Liang, T. Makarenko, O. Š Miljanić, I. Popovs, H. V. Tran, X. Wang, C.-H. Wu, J. I. Wu, J. Am. Chem. Soc. 2018, 140, 6014–6026; Miljanić, I. Popovs, H. V. Tran, X. Wang, C.-H. Wu, J. I. Wu, J. Am. Chem. Soc. 2018, 140, 6014–6026;
- 26cQ. Yin, P. Zhao, R.-J. Sa, G.-C. Chen, J. Lü, T.-F. Liu, R. Cao, Angew. Chem. Int. Ed. 2018, 57, 7691–7696;
- 26dI. Hisaki, Y. Suzuki, E. Gomez, Q. Ji, N. Tohnai, T. Nakamura, A. Douhal, J. Am. Chem. Soc. 2019, 141, 2111–2121;
- 26eK. Ma, P. Li, J. H. Xin, Y. Chen, Z. Chen, S. Goswami, X. Liu, S. Kato, H. Chen, X. Zhang, J. Bai, M. C. Wasson, R. R. Maldonado, R. Q. Snurr, O. K. Farha, Cell Rep. Phys. Sci. 2020, 1, 100024.
- 27
- 27aT. He, X.-J. Kong, Z.-X. Bian, Y.-Z. Zhang, G.-R. Si, L.-H. Xie, X.-Q. Wu, H. Huang, Z. Chang, X.-H. Bu, M. J. Zaworotko, Z.-R. Nie, J.-R. Li, Nat. Mater. 2022, 21, 689–695;
- 27bL. Hu, W. Wu, M. Hu, L. Jiang, D. Lin, J. Wu, K. Yang, Nat. Commun. 2024, 15, 3204.
- 28
- 28aS. Bracco, D. Piga, I. Bassanetti, J. Perego, A. Comotti, P. Sozzani, J. Mater. Chem. A 2017, 5, 10328–10337;
- 28bT. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu, G. Zhu, Angew. Chem. Int. Ed. 2009, 48, 9457–9460.
- 29W. Lu, D. Yuan, D. Zhao, C. I. Schilling, O. Plietzsch, T. Muller, S. Bräse, J. Guenther, J. Blümel, R. Krishna, Z. Li, H.-C. Zhou, Chem. Mater. 2010, 22, 5964–5972.
- 30Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, T. Yildirim, J. Am. Chem. Soc. 2013, 135, 11887–11894.
- 31
- 31aX. Zhang, J.-X. Wang, L. Li, J. Pei, R. Krishna, H. Wu, W. Zhou, G. Qian, B. Chen, B. Li, Angew. Chem. Int. Ed. 2021, 60, 10304–10310;
- 31bF.-A. Guo, K. Zhou, J. Liu, H. Wang, J. Li, Precis. Chem. 2023, 1, 524–529.
- 32S. Bhattacharya, K. E. Gubbins, Langmuir 2006, 22, 7726–7731.
- 33
- 33aR. Zhu, J. Ding, L. Jin, H. Pang, Coord. Chem. Rev. 2019, 389, 119–140;
- 33bX. Guan, Q. Fang, Y. Yan, S. Qiu, Acc. Chem. Res. 2022, 55, 1912–1927.
- 34J. Jia, Z. Chen, H. Jiang, Y. Belmabkhout, G. Mouchaham, H. Aggarwal, K. Adil, E. Abou-Hamad, J. Czaban-Jóźwiak, M. R. Tchalala, M. Eddaoudi, Chem 2019, 5, 180–191.
- 35V. Rozyyev, D. Thirion, R. Ullah, J. Lee, M. Jung, H. Oh, M. Atilhan, C. T. Yavuz, Nat. Energy 2019, 4, 604–611.
- 36D. J. Siegel, B. Hardy, HSECoE Team. Engineering an adsorbent-based hydrogen storage system: What have we learned? https://energy.gov/sites/prod/files/2015/02/f19/fcto_h2_storage_summit_siegel.pdf.
- 37Deposition numbers 2363470 (for ZJU-HOF-5) and 2133280 (for CH4@ZJU-HOF-5a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 38
- 38aV. Rozyyev, C. T. Yavuzl, Chem 2017, 3, 719–721;
- 38bT. A. Makal, J.-R. Li, W. Lu, H.-C. Zhou, Chem. Soc. Rev. 2012, 41, 7761–7779;
- 38cJ. A. Mason, M. Veenstra, J. R. Long, Chem. Sci. 2014, 5, 32–51.