Capturing the Interplay Between TADF and RTP Through Mechanically Flexible Polymorphic Optical Waveguides
Correction(s) for this article
-
CORRIGENDUM: Correction to “Capturing the Interplay Between TADF and RTP through Mechanically Flexible Polymorphic Optical Waveguides”
- Volume 64Issue 10Angewandte Chemie International Edition
- First Published online: February 7, 2025
Dr. Avulu Vinod Kumar
Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046 Telangana, India
Equal contribution of authors
Search for more papers by this authorPradip Pattanayak
Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246 West Bengal, India
Equal contribution of authors
Search for more papers by this authorAnkur Khapre
Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046 Telangana, India
Search for more papers by this authorArnab Nandi
Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorCorresponding Author
Prof. Pradipta Purkayastha
Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorCorresponding Author
Prof. Rajadurai Chandrasekar
Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046 Telangana, India
Search for more papers by this authorDr. Avulu Vinod Kumar
Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046 Telangana, India
Equal contribution of authors
Search for more papers by this authorPradip Pattanayak
Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246 West Bengal, India
Equal contribution of authors
Search for more papers by this authorAnkur Khapre
Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046 Telangana, India
Search for more papers by this authorArnab Nandi
Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorCorresponding Author
Prof. Pradipta Purkayastha
Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorCorresponding Author
Prof. Rajadurai Chandrasekar
Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046 Telangana, India
Search for more papers by this authorGraphical Abstract
Flexible organic crystals offer pioneering options to explore diverse photophysical phenomena through clever crystal engineering principles. Here we demonstrate capturing the interplay between TADF and RTP through mechanically flexible polymorphic optical waveguides with the help of AFM-tip-based mechanophotonics technique.
Abstract
Polymorphism plays a pivotal role in generating a range of crystalline materials with diverse photophysical and mechanical attributes, all originating from the same molecule. Here, we showcase two distinct polymorphs: green (GY) emissive and orange (OR) emissive crystals of 5′-(4-(diphenylamino)phenyl)-[2,2′-bithiophene]-5-carbaldehyde (TPA-CHO). These polymorphs display differing optical characteristics, with GY exhibiting thermally activated delayed fluorescence (TADF) and OR showing room temperature phosphorescence (RTP). Additionally, both polymorphic crystals display mechanical flexibility and optical waveguiding capabilities. Leveraging the AFM-tip-based mechanophotonics technique, we position the GY optical waveguide at varying lengths perpendicular to the OR waveguide. This approach facilitates the exploration of the interplay between TADF and RTP phenomena by judiciously controlling the optical path length of crystal waveguides. Essentially, our approach provides a clear pathway for understanding and controlling the photophysical processes in organic molecular crystals, paving the way for advancements in polymorphic crystal-based photonic circuit technologies.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202411054-sup-0001-misc_information.pdf6.6 MB | Supporting Information |
anie202411054-sup-0001-TPA-CHO_GY.mp47.6 MB | Supporting Information |
anie202411054-sup-0001-TPA-CHO_OR_crystal_bending-1.mp45.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238;
- 1bJ. Mei, N. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940;
- 1cS. Li, L. Fu, X. Xiao, H. Geng, Q. Liao, Y. Liao, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 18059–18064;
- 1dK. Zheng, F. Ni, Z. Chen, C. Zhong, C. Yang, Angew. Chem. Int. Ed. 2019, 59, 9972;
- 1eP. Pattanayak, A. Nandi, P. Purkayastha, Chem. Mater. 2023, 35, 9799.
- 2
- 2aS. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, Nature 2009, 459, 234–238;
- 2bM. Schwarze, W. Tress, B. Beyer, F. Gao, R. Scholz, C. Poelking, K. Ortstein, A. A. Günther, D. Kasemann, D. Andrienko, K. Leo, Science 2016, 352, 1446–1449;
- 2cY. Liu, F. Zhu, Y. Wang, D. Yan, Light-Sci. Appl. 2024, 13.
- 3
- 3aY. S. Zhao, Organic Nanophotonics: Fundamentals and Applications, Springer, Berlin Heidelberg 2014;
- 3bR. Chandrasekar, Phys. Chem. Chem. Phys. 2014, 16, 7173;
- 3cN. Mitetelo, D. Venkatakrishnarao, J. Ravi, M. Popov, E. Mamonov, T. V. Murzina, R. Chandrasekar, Adv. Opt. Mater. 2019, 7, 1801775;
- 3dP. Hui, R. Chandrasekar, Adv. Mater. 2013, 25, 2963;
- 3eN. Chandrasekhar, S. Basak, M. A. Mohiddon, R. Chandrasekar, ACS Appl. Mater. Interfaces 2014, 6, 1488;
- 3fV. V. Pradeep, N. Mitetelo, M. Annadhasan, E. Mamonov, T. V. Murzina, R. Chandrasekar, Adv. Opt. Mater. 2020, 8, 1901317;
- 3gY. Zhang, Q. Liao, X. G. Wang, J. N. A. Yao, H. B. Fu, Angew. Chem. Int. Ed. 2017, 56, 3616;
- 3hM. P. Zhuo, J. J. Wu, X. D. Wang, Y. C. Tao, Y. Yuan, L. S. Liao, Nat. Commun. 2019, 10, 9;
- 3iX. Zhang, J. J. Wu, H. Gao, Y. Zhao, W. Qi, J. Feng, X. D. Wang, Y. Wu, L. Jiang, Adv. Opt. Mater. 2020, 8, 1901643;
- 3jM.-P. Zhuo, G.-P. He, Y. Yuan, Y.-C. Tao, G.-Q. Wei, X.-D. Wang, S.-T. Lee, L.-S. Liao, CCS Chem. 2020, 2, 413;
- 3kR. Chandrasekar, Chem. Commun. 2022, 58, 3415;
- 3lV. V. Pradeep, C. Tardío, I. T. -Moya, A. M. Rodrígue, A. Vinod Kumar, M. Annadhasan, A. de la Hoz, P. Prieto, R. Chandrasekar, Small 2021, 17, 2006795.
- 4
- 4aG. Zhao, H. Dong, Q. Liao, J. Jiang, Y. Luo, H. Fu, W. Hu, Nat. Commun. 2018, 9, 4790;
- 4bD. P. Karothu, G. Dushaq, E. Ahmed, L. Catalano, M. Rasras, P. Naumov, Angew. Chem. 2021, 133, 26355.
10.1002/ange.202110676 Google Scholar
- 5D. A. Kara, E. K. Burnett, K. Kara, Ö. Usluer, B. P. Cherniawski, E. J. Barron, B. Gültekin, M. Kuş, A. L. Briseño, Phys. Chem. Chem. Phys. 2022, 24, 10869.
- 6
- 6aS. Yousuf, J. M. Halabi, I. Tahir, E. Ahmed, R. Rezgui, L. Li, P. Laws, M. F. Daqaq, P. Naumov, Angew. Chem. Int. Ed. 2023, 62, e202217329;
- 6bA. V. Kumar, M. Rohullah, M. Chosenyah, J. Ravi, U. Venkataramudu, R. Chandrasekar, Angew. Chem. Int. Ed. 2023, 62, e202300046;
- 6cX. Yang, L. Lan, L. Li, X. Liu, P. Naumov, H. Zhang, Nat. Commun. 2022, 13, 2322;
- 6dL. Lan, L. Li, X. Yang, B. Tang, X. Yu, X. Liu, P. Naumov, H. Zhang, Angew. Chem. Int. Ed. 2022, 61, DOI 10.1002/anie.202200196;
- 6eX. Yang, L. Lan, X. Pan, Q. Di, X. Liu, L. Li, P. Naumov, H. Zhang, Nat. Commun. 2023, 14, 2287;
- 6fX. Yang, L. Lan, L. Li, J. Yu, X. Liu, Y. Tao, Q.-H. Yang, P. Naumov, H. Zhang, Nat. Commun. 2023, 14, 3627;
- 6gS. Tang, K. Ye, P. Commins, L. Li, P. Naumov, H. Zhang, Adv. Opt. Mater. 2022, 11, 2200627;
- 6hL. Lan, X. Pan, P. Commins, L. Li, L. Catalano, D. Yan, H. Xiong, C. Wang, P. Naumov, H. Zhang, CCS Chem. 2024, 1, 29.
- 7
- 7aY. Zhang, F. Fang, L. Li, J. Zhang, ACS Biomater. Sci. Eng. 2020, 6, 4816;
- 7bX. J. Dai, Z. Liu, Y. Ge, P. Wei, TrAC Trends Anal. Chem. 2023, 168, 117339;
- 7cZ. Wu, A. C. Midgley, D. Kong, D. Ding, Mater. Today Bio. 2022, 17, 100481.
- 8K. Huang, L. Song, K. Liu, A. Lv, M. Singh, K. Shen, J. Shen, J. Wang, H. Wang, H. Shi, H. Ma, M. Gu, G. Sun, W. Yao, Z. An, W. Huang, npj flex. electron. 2021, 5, 21.
- 9L. Shi, L. Ding, Y. Zhang, S. Lu, Nano Today 2024, 55, 102200.
- 10
- 10aW. Zhang, J. Yao, Y. S. Zhao, Acc. Chem. Res. 2016, 49, 1691;
- 10bX. Wang, Q. Liao, H. Li, S. Bai, Y. Wau, X. Lu, H. Hu, Q. Shi, H. Fu, J. Am. Chem. Soc. 2015, 137, 9289;
- 10cX. Wang, Q. Liao, Q. Kong, Y. Zhang, Z. Xu, X. Lu, H. Fu, Angew. Chem. 2014, 126, 5973;
- 10dD. Venkatakrishnarao, Y. S. L. V. Narayana, M. A. Mohaiddon, E. A. Mamonov, I. A. Kolmychek, A. I. Maydykovskiy, V. B. Novikov, T. V. Murzina, R. Chandrasekar, Adv. Mater. 2017, 29, 1605260;
- 10eU. Balijapalli, R. Nagata, N. Yamada, H. Nakanotani, M. Tanaka, A. D'Aléo, V. Placide, M. Mamada, Y. Tsuchiya, C. Adachi, Angew. Chem. Int. Ed. 2021, 60, 8477.
- 11
- 11aM. Godumala, A. V. Kumar, R. Chandrasekar, J. Mater. Chem. C 2021, 40, 14115;
- 11bP. Pattanayak, A. Nandi, R. Patra, P. Purkayastha, Adv. Opt. Mater. 2023, 12, 2302155;
- 11cA. Chatterjee, J. Chatterjee, S. Sappati, R. Tanwar, M. D. Ambhore, H. Arfin, R. M. Umesh, M. Lahiri, P. Mandal, P. Hazra, Chem. Sci. 2023, 14, 13832–13841.
- 12
- 12aS. Ghosh, C. M. Reddy, Angew. Chem. Int. Ed. 2012, 51, 10319–10323;
- 12bD. P. Karothu, J. M. Halabi, E. Ahmed, R. Ferreira, P. R. Spackman, M. A. Spackman, P. Naumov, Angew. Chem. Int. Ed. 2022, 134, e202113988;
10.1002/ange.202113988 Google Scholar
- 12cA. Worthy, A. Grosjean, M. C. Pfrunder, Y. Xu, C. Yan, G. Edwards, J. K. Clegg, J. C. McMurtrie, Nat. Chem. 2018, 10, 65–69;
- 12dP. Naumov, D. P. Karothu, E. Ahmed, L. Catalano, P. Commins, J. M. Halabi, M. B. Al-Handawi, L. Li, J. Am. Chem. Soc. 2021, 142, 13256;
- 12eM. Annadhasan, A. R. Agrawal, S. Bhunia, V. V. Pradeep, S. S. Zade, C. M. Reddy, R. Chandrasekar, Angew. Chem. Int. Ed. 2020, 59, 13852;
- 12fP. Shiva, A. Khapre, M. Chosenyah, A. V. Kumar, R. Chandrasekar, Chem. Mater. 2023, 35, 2302369.
- 13
- 13aK. Takazawa, J.-I. Inoue, K. Mitsuishi, T. Takamasu, Adv. Mater. 2011, 23, 3659;
- 13bN. Chandrasekhar, M. A. Mohiddon, R. Chandrasekar, Adv. Opt. Mater. 2013, 1, 305;
- 13cH. Liu, Z. Lu, Z. Zhang, Y. Wang, H. Zhang, Angew. Chem. Int. Ed. 2018, 57, 8448–8452;
- 13dR. Huang, C. Wang, Y. Wang, H. Zhang, Adv. Mater. 2018, 30, 1800814;
- 13eS. Hayashi, T. Koizumi, Angew. Chem. Int. Ed. 2016, 55, 2701–2704;
- 13fL. Catalano, D. P. Karothu, S. Schramm, E. Ahmed, R. Rezgui, T. J. Barber, A. Famulari, P. Naumov, Angew. Chem. Int. Ed. 2018, 57, 17254–17258;
- 13gJ. Ravi, R. Chandrasekar, Adv. Opt. Mater. 2021, 9, 2100550;
- 13hM. Rohullah, V. V. Pradeep, S. Shruti, R. Chandrasekar, Nat. Commun. 2024, 15, 4040.
- 14L. Catalano, D. P. Karothu, S. Schramm, E. Ahmed, R. Rezgui, T. J. Barber, A. Famulari, P. Naumov, Angew. Chem. Int. Ed. 2018, 57, 17254.
- 15H. Liu, Z. Bian, Q. Cheng, L. Lan, Y. Wang, H. Zhang, Chem. Sci. 2019, 10, 227.
- 16
- 16aJ. Ravi, M. Annadhasan, A. V. Kumar, R. Chandrasekar, Adv. Funct. Mater. 2021, 31, 2100642;
- 16bJ. Ravi, A. V. Kumar, D. P. Karothu, M. Annadhasan, P. Naumov, R. Chandrasekar, Adv. Funct. Mater. 2021, 31, 2105415;
- 16cA. V. Kumar, M. Godumala, J. Ravi, R. Chandrasekar, Angew. Chem. Int. Ed. 2022, 61, e202212382;
- 16dA. V. Kumar, R. Chandrasekar, Adv. Opt. Mater. 2023, 11, 2201009;
- 16eA. Vinod Kumar, R. Chandrasekar, J. Mater. Chem. C 2023, 11, 7995.
- 17S. Aitipamula, R. Banerjee, A. K. Bansal, K. Biradha, M. L. Cheney, A. R. Choudhury, G. R. Desiraju, A. G. Dikundwar, R. Dubey, N. Duggirala, P. P. Ghogale, S. Ghosh, P. K. Goswami, N. R. Goud, R. R. K. R. Jetti, P. Karpiński, P. Kaushik, D. Kumar, V. Kumar, B. Moulton, A. Mukherjee, G. Mukherjee, A. S. Myerson, V. Puri, A. Ramanan, R. Thennati, C. M. Reddy, N. Rodríguez-Hornedo, R. D. Rogers, T. N. G. Row, P. Sanphui, N. Shan, G. Shete, A. K. Singh, C. C. Sun, J. A. Swift, R. Thaimattam, T. S. Thakur, R. K. Thaper, S. P. Thomas, S. Tothadi, V. R. Vangala, N. Varíankaval, P. Vishweshwar, D. R. Weyna, M. J. Zaworotko, Cryst. Growth Des. 2012, 12, 2147–2152.
- 18S. Li, L. Fu, X. Xiao, H. Geng, Q. Liao, Y. Liao, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 18059–18064.
- 19Y.-R. Liu, L. Chan, H.-J. Tang, Journal of Polymer Science. Part a, Polym. Chem. 2015, 53, 2878.