Diatomic Catalysts for Aqueous Zinc-Iodine Batteries: Mechanistic Insights and Design Strategies
Peng Hei
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorYa Sai
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorWenjie Li
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorJianming Meng
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorYulai Lin
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorXiaoqi Sun
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University), Ministry of Education, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorCorresponding Author
Jing Wang
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 China
Search for more papers by this authorCorresponding Author
Yu Song
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University), Ministry of Education, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorXiao-Xia Liu
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University), Ministry of Education, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorPeng Hei
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorYa Sai
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorWenjie Li
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorJianming Meng
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorYulai Lin
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorXiaoqi Sun
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University), Ministry of Education, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorCorresponding Author
Jing Wang
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 China
Search for more papers by this authorCorresponding Author
Yu Song
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University), Ministry of Education, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorXiao-Xia Liu
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University), Ministry of Education, 3-11, Wenhua Road, Heping district, Shenyang, 110819 China
Search for more papers by this authorGraphical Abstract
The spin exchange effect between diatomic sites activates the diatomic catalysts, effectively suppressing the shuttle effect of triiodide and facilitating the iodine conversion reaction. Utilizing MnZn−NC diatomic catalysts, the zinc-iodine battery demonstrates both a high specific capacity and exceptional cycling stability over 320,000 cycles.
Abstract
There has been a growing interest in developing catalysts to enable the reversible iodine conversion reaction for high-performance aqueous zinc-iodine batteries (AZIBs). While diatomic catalysts (DACs) have demonstrated superior performance in various catalytic reactions due to their ability to facilitate synergistic charge interactions, their application in AZIBs remains unexplored. Herein, we present, for the first time, a DAC comprising Mn−Zn dual atoms anchored on a nitrogen-doped carbon matrix (MnZn−NC) for iodine loading, resulting in a high-performance AZIB with a capacity of 224 mAh g−1 at 1 A g−1 and remarkable cycling stability over 320,000 cycles. The electron hopping along the Mn−N−Zn bridge is stimulated via a spin exchange mechanism. This process broadens the Mn 3dxy band width and enhances the metallic character of the catalyst, thus facilitating charge transfer between the catalysts and reaction intermediates. Additionally, the increased electron occupancy within the d-orbital of Zn elevates Zn's d-band center, thereby enhancing chemical interactions between MnZn−NC and I-based species. Furthermore, our mechanism demonstrates potential applicability to other Metal-Zn−NC DACs with spin-polarized atoms. Our work elucidates a clear mechanistic understanding of diatomic catalysts and provides new insights into catalyst design for AZIBs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202410848-sup-0001-misc_information.pdf5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Larcher, J. M. Tarascon, Nat. Chem. 2014, 7, 19–29;
- 1bJ. Liu, W. Zhou, R. Zhao, Z. Yang, W. Li, D. Chao, S.-Z. Qiao, D. Zhao, J. Am. Chem. Soc. 2021, 143, 15475–15489;
- 1cY. Song, Q. Pan, H. Lv, D. Yang, Z. Qin, M. Y. Zhang, X. Sun, X. X. Liu, Angew. Chem. Int. Ed. 2021, 60, 5718–5722; Angew. Chem. 2021, 133, 5782–5786;
- 1dH. Zhao, D. Yin, Y. Qin, X. Cui, J. Feng, Y. Zhang, L. Zhao, N. Gao, M. Cui, C. Xiao, G. Feng, Y. Su, K. Xi, S. Ding, J. Am. Chem. Soc. 2024, 146, 6744–6752;
- 1eY. Yang, S. Guo, Y. Pan, B. Lu, S. Liang, J. Zhou, Energy Environ. Sci. 2023, 16, 2358–2367;
- 1fD. Lin, D. Rao, S. Chiovoloni, S. Wang, J. Q. Lu, Y. Li, Nano Lett. 2021, 21, 4129–4135;
- 1gP. Ruan, S. Liang, B. Lu, H. J. Fan, J. Zhou, Angew. Chem. Int. Ed. 2022, 61, e202200598; Angew. Chem. 2022, 134, e202200598;
- 1hX. Li, M. Li, Z. Huang, G. Liang, Z. Chen, Q. Yang, Q. Huang, C. Zhi, Energy Environ. Sci. 2021, 14, 407–413;
- 1iT. Liu, C. Lei, H. Wang, C. Xu, W. Ma, X. He, X. Liang, Sci. Bull. 2024, 69, 1674–1685;
- 1jG. Yasin, M. Arif, T. Mehtab, X. Lu, D. Yu, N. Muhammad, M. T. Nazir, H. Song, Energy Storage Mater. 2020, 25, 644–678.
- 2
- 2aS. Yang, X. Guo, H. Lv, C. Han, A. Chen, Z. Tang, X. Li, C. Zhi, H. Li, ACS Nano 2022, 16, 13554–13572;
- 2bD. Lin, Y. Li, Adv. Mater. 2022, 34, 2108856;
- 2cT. Liu, C. Lei, H. Wang, J. Li, P. Jiang, X. He, X. Liang, Adv. Mater. 2024, 24054763.
- 3H. Yu, Z. Wang, R. Zheng, L. Yan, L. Zhang, J. Shu, Angew. Chem. Int. Ed. 2023, 62, e202308397.
- 4
- 4aB. Tang, L. Shan, S. Liang, J. Zhou, Energy Environ. Sci. 2019, 12, 3288–3304;
- 4bL. Ma, Y. Ying, S. Chen, Z. Huang, X. Li, H. Huang, C. Zhi, Angew. Chem. Int. Ed. 2020, 60, 3791–3798;
- 4cJ. L. Yang, H. H. Liu, X. X. Zhao, X. Y. Zhang, K. Y. Zhang, M. Y. Ma, Z. Y. Gu, J. M. Cao, X. L. Wu, J. Am. Chem. Soc. 2024, 146, 6628–6637;
- 4dY. Zou, T. Liu, Q. Du, Y. Li, H. Yi, X. Zhou, Z. Li, L. Gao, L. Zhang, X. Liang, Nat. Commun. 2021, 12, 170.
- 5M. Liu, Q. Chen, X. Cao, D. Tan, J. Ma, J. Zhang, J. Am. Chem. Soc. 2022, 144, 21683–21691.
- 6W. Qu, J. Zhu, G. Cao, S. Chen, Y. Tan, B. Chen, M. Zhang, Small 2024, 26, 2310475.
- 7
- 7aW. Song, C. Xiao, J. Ding, Z. Huang, X. Yang, T. Zhang, D. Mitlin, W. Hu, Adv. Mater. 2023, 36, 2301477;
- 7bL. Gloag, S. V. Somerville, J. J. Gooding, R. D. Tilley, Nat. Rev. Mater. 2024, 9, 173–189;
- 7cF. Yang, J. Long, J. A. Yuwono, H. Fei, Y. Fan, P. Li, J. Zou, J. Hao, S. Liu, G. Liang, Y. Lyu, X. Zheng, S. Zhao, K. Davey, Z. Guo, Energy Environ. Sci. 2023, 16, 4630–4640.
- 8
- 8aL. Wang, X. Gao, S. Wang, C. Chen, J. Song, X. Ma, T. Yao, H. Zhou, Y. Wu, J. Am. Chem. Soc. 2023, 145, 13462–13468;
- 8bH. Li, W. Wang, S. Xue, J. He, C. Liu, G. Gao, S. Di, S. Wang, J. Wang, Z. Yu, L. Li, J. Am. Chem. Soc. 2024, 146, 9124–9133.
- 9
- 9aQ. Hao, H. X. Zhong, J. Z. Wang, K. H. Liu, J. M. Yan, Z. H. Ren, N. Zhou, X. Zhao, H. Zhang, D. X. Liu, X. Liu, L. W. Chen, J. Luo, X. B. Zhang, Nat. Synth. 2022, 1, 719–728;
- 9bH. Li, S. Di, P. Niu, S. Wang, J. Wang, L. Li, Energy Environ. Sci. 2022, 15, 1601–1610.
- 10M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang, C. Tian, L. Wang, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 14005–14012.
- 11Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan, S. Zhang, S. Fang, X. Fan, W. Xu, H. Lu, J. Lu, H. Zhang, Nat. Catal. 2022, 5, 555–563.
- 12
- 12aG. Yasin, S. Ali, S. Ibraheem, A. Kumar, M. Tabish, M. A. Mushtaq, S. Ajmal, M. Arif, M. A. Khan, A. Saad, L. Qiao, W. Zhao, ACS Catal. 2023, 13, 2313–2325;
- 12bY. Li, B. Wei, M. Zhu, J. Chen, Q. Jiang, B. Yang, Y. Hou, L. Lei, Z. Li, R. Zhang, Y. Lu, Adv. Mater. 2021, 33, 2102212;
- 12cS. Ajmal, A. Kumar, M. A. Mushtaq, M. Tabish, Y. Zhao, W. Zhang, A. S. Khan, A. Saad, G. Yasin, W. Zhao, Small 2024, 32, 2310082;
- 12dG. Yasin, S. Ibraheem, S. Ali, M. Arif, S. Ibrahim, R. Iqbal, A. Kumar, M. Tabish, M. A. Mushtaq, A. Saad, H. Xu, W. Zhao, Mater. Today Chem. 2022, 23,100634.
- 13D. Yu, A. Kumar, T. A. Nguyen, M. T. Nazir, G. Yasin, ACS Sustainable Chem. Eng. 2020, 8, 13769–13776.
- 14Z. Zhang, W. Ling, N. Ma, J. Wang, X. Chen, J. Fan, M. Yu, Y. Huang, Adv. Funct. Mater. 2023, 34, 2310294.
- 15
- 15aS. J. Zhang, J. Hao, H. Li, P. F. Zhang, Z. W. Yin, Y. Y. Li, B. Zhang, Z. Lin, S. Z. Qiao, Adv. Mater. 2022, 34, 2201716;
- 15bZ. Li, W. Cao, T. Hu, Y. Hu, R. Zhang, H. Cui, F. Mo, C. Liu, C. Zhi, G. Liang, Angew. Chem. Int. Ed. 2023, 63, e202317652;
- 15cY. Du, R. Kang, H. Jin, W. Zhou, W. Zhang, H. Wang, J. Qin, J. Wan, G. Chen, J. Zhang, Adv. Funct. Mater. 2023, 33, 2304811;
- 15dT. Liu, H. Wang, C. Lei, Y. Mao, H. Wang, X. He, X. Liang, Energy Storage Mater. 2022, 53, 544–551.
- 16X. Li, N. Li, Z. Huang, Z. Chen, G. Liang, Q. Yang, M. Li, Y. Zhao, L. Ma, B. Dong, Q. Huang, J. Fan, C. Zhi, Adv. Mater. 2022, 34, 2201716.
- 17P. Hei, Y. Sai, C. Liu, W. Li, J. Wang, X. Sun, Y. Song, X. X. Liu, Angew. Chem. Int. Ed. 2023, 63, e202317652.
- 18
- 18aL. Li, J. Zhu, F. Kong, Y. Wang, C. Kang, M. Xu, C. Du, G. Yin, Matter 2024, 7, 1517–1532;
- 18bL. Wang, Q. An, X. Sheng, Z. Mei, Q. Jing, X. Zhao, Q. Xu, L. Duan, X. Zou, H. Guo, Appl. Catal. B 2024, 343, 123509.
- 19R. Yan, Z. Zhao, M. Cheng, Z. Yang, C. Cheng, X. Liu, B. Yin, S. Li, Angew. Chem. Int. Ed. 2022, 62, e202215414.
- 20
- 20aK. Zhang, A. Cao, L. H. Wandall, J. Vernieres, J. Kibsgaard, J. K. Nørskov, I. Chorkendorff, Science 2024, 383, 1357–1363;
- 20bH. Li, M. Chuai, X. Xiao, Y. Jia, B. Chen, C. Li, Z. Piao, Z. Lao, M. Zhang, R. Gao, B. Zhang, Z. Han, J. Yang, G. Zhou, J. Am. Chem. Soc. 2023, 145, 22516–22526;
- 20cC. Y. Zhang, C. Zhang, G. W. Sun, J. L. Pan, L. Gong, G. Z. Sun, J. J. Biendicho, L. Balcells, X. L. Fan, J. R. Morante, J. Y. Zhou, A. Cabot, Angew. Chem. Int. Ed. 2022, 61, e202211570.
- 21
- 21aL. Li, J. Zhou, X. Wang, J. Gracia, M. Valvidares, J. Ke, M. Fang, C. Shen, J. M. Chen, Y. C. Chang, C. W. Pao, S. Y. Hsu, J. F. Lee, A. Ruotolo, Y. Chin, Z. Hu, X. Huang, Q. Shao, Adv. Mater. 2023, 35, 2302966;
- 21bA. Cao, V. J. Bukas, V. Shadravan, Z. Wang, H. Li, J. Kibsgaard, I. Chorkendorff, J. K. Nørskov, Nat. Commun. 2022, 13, 2382.