Silylene-Copper-Amide Emitters: From Thermally Activated Delayed Fluorescence to Dual Emission
This article relates to:
-
Shabana Khan
- Volume 63Issue 46Angewandte Chemie International Edition
- First Published online: October 16, 2024
Moushakhi Ghosh
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorJoy Chatterjee
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Both the authors contributed equally.
Search for more papers by this authorDr. Prakash Panwaria
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Both the authors contributed equally.
Search for more papers by this authorAshwath Kudlu
Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, 517507 India
Search for more papers by this authorDr. Srinu Tothadi
Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002 India
Search for more papers by this authorCorresponding Author
Prof. Shabana Khan
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorMoushakhi Ghosh
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorJoy Chatterjee
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Both the authors contributed equally.
Search for more papers by this authorDr. Prakash Panwaria
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Both the authors contributed equally.
Search for more papers by this authorAshwath Kudlu
Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, 517507 India
Search for more papers by this authorDr. Srinu Tothadi
Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002 India
Search for more papers by this authorCorresponding Author
Prof. Shabana Khan
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorGraphical Abstract
Abstract
Herein, we report the inaugural instance of N-heterocyclic silylene (NHSi)-coordinated copper amide emitters (2–5). These complexes exhibit thermally activated delayed fluorescence (TADF) and singlet-triplet dual emission in anaerobic conditions. The NHSi-Cu-diphenylamide (2) complex demonstrates TADF with a very small ΔEST gap (0.01 eV), an absolute quantum yield of 11 %, a radiative rate of 2.55×105 s−1, and a short τTADF of 0.45 μs in the solid state. The dual emissive complexes (3–5) achieve an absolute quantum yield of up to 20 % in the solid state with a kISC rate of 1.82×108 s−1 and exhibit room temperature phosphorescence (RTP) with lifetimes up to 9 ms. The gradual decrease in the intensity of the triplet state of complex 3 under controlled oxygen exposure demonstrates its potential for future oxygen-sensing applications. Complexes 2 and 3 have been further utilized to fabricate converted LEDs, paving the way for future OLED production using newly synthesized NHSi-Cu-amides.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202410792-sup-0001-Complex_10.cif1.5 MB | Supporting Information |
anie202410792-sup-0001-Complex_2.cif2.6 MB | Supporting Information |
anie202410792-sup-0001-Complex_3.cif3.8 MB | Supporting Information |
anie202410792-sup-0001-Complex_4.cif2.7 MB | Supporting Information |
anie202410792-sup-0001-Complex_5.cif6.3 MB | Supporting Information |
anie202410792-sup-0001-Complex_6.cif1.2 MB | Supporting Information |
anie202410792-sup-0001-Complex_7.cif5.9 MB | Supporting Information |
anie202410792-sup-0001-Complex_8.cif3 MB | Supporting Information |
anie202410792-sup-0001-Complex_9.cif2.6 MB | Supporting Information |
anie202410792-sup-0001-misc_information.pdf13 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691;
- 1bM. Haaf, T. A. Schmedake, R. West, Acc. Chem. Res. 2000, 33, 704.
- 2C. K. Shan, S. L. Yao, M. Driess, Chem. Soc. Rev. 2020, 49, 6733.
- 3
- 3aS. Raoufmoghaddam, Y.-P. Zhou, Y. Wang, M. Driess, J. Organomet. Chem. 2017, 829, 2;
- 3bL. Wang, Y. Li, Z. Li, M. Kira, Coord. Chem. Rev. 2022, 457, 214413.
- 4
- 4aP. Jutzi, U. Holtmann, D. Kanne, C. Krüger, R. Blom, R. Gleiter, I. Hyla-Kryspin, Chem. Ber. 1989, 122, 1629;
- 4bC. W. So, H. W. Roesky, J. Magull, R. B. Oswald, Angew. Chem. Int. Ed. 2006, 45, 3948;
- 4cM. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722;
- 4dM. Asay, S. Inoue, M. Driess, Angew. Chem. Int. Ed. 2011, 50, 9589;
- 4eB. D. Rekken, T. M. Brown, J. C. Fettinger, H. M. Tuononen, P. P. Power, J. Am. Chem. Soc. 2012, 134, 6504;
- 4fA. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, J. Am. Chem. Soc. 2012, 134, 6500;
- 4gA. Rosas-Sanchez, I. Alvarado-Beltran, A. Baceiredo, N. Saffon-Merceron, S. Massou, V. Branchadell, T. Kato, Angew. Chem. Int. Ed. 2017, 56, 10549;
- 4hS. Fujimori, S. Inoue, Eur. J. Inorg. Chem. 2020, 2020, 3131;
- 4iR. Guthardt, C. Jones, Chem. Commun. 2024, 60, 1583;
- 4jM. M. Roy, M. J. Ferguson, R. McDonald, Y. Zhou, E. Rivard, Chem. Sci. 2019, 10, 6476;
- 4kP. Garg, A. Carpentier, I. Douair, D. Dange, Y. Jiang, K. Yuvaraj, L. Maron, C. Jones, Angew. Chem. Int. Ed. 2022, 61, e202201705;
- 4lR. Akhtar, K. Gaurav, S. Khan, Chem. Soc. Rev. 2024, 53, 6243;
- 4mC. Weetman, S. Inoue, ChemCatChem 2018, 10, 4213.
- 5
- 5aB. Blom, D. Gallego, M. Driess, Inorg. Chem. Front. 2014, 1, 134;
- 5bY. P. Zhou, M. Driess, Angew. Chem. Int. Ed. 2019, 58, 3715.
- 6
- 6aS. K. Kushvaha, P. Kallenbach, S. S. Rohman, M. K. Pandey, Z. Hendi, F. Rüttger, R. Herbst-Irmer, D. Stalke, P. Parameswaran, H. W. Roesky, J. Am. Chem. Soc. 2023, 145, 25523;
- 6bJ. Fan, L. Yue, C. Liu, B. Rao, G. Zhou, A. Li, B. Su, J. Am. Chem. Soc. 2024, 146, 39.
- 7
- 7aN. M. Obeid, L. Klemmer, D. Maus, M. Zimmer, J. Jeck, I. Bejan, A. J. P. White, V. Huch, G. Jung, D. Scheschkewitz, Dalton Trans. 2017, 46, 8839;
- 7bM. Kobayashi, T. Matsuo, T. Fukunaga, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, J. Am. Chem. Soc. 2010, 132, 15162;
- 7cM. Kobayashi, N. Hayakawa, T. Matsuo, B. Li, T. Fukunaga, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, J. Am. Chem. Soc. 2016, 138, 758;
- 7dN. Hayakawa, S. Nishimura, N. Kazusa, N. Shintani, T. Nakahodo, H. Fujihara, M. Hoshino, D. Hashizume, T. Matsuo, Organometallics 2017, 36, 3226;
- 7eF. Hanusch, L. Groll, S. Inoue, Chem. Sci. 2021, 12, 2001.
- 8
- 8aC.-L. Deng, A. D. Obi, B. Y. E. Tra, S. K. Sarkar, D. A. Dickie, R. J. Gilliard, Nat. Chem. 2024, 16, 437;
- 8bS. K. Sarkar, K. K. Hollister, A. Molino, A. D. Obi, C.-L. Deng, B. Y. E. Tra, B. M. Stewart, D. A. Dickie, D. J. D. Wilson, R. J. Gilliard, Jr., J. Am. Chem. Soc. 2023, 145, 21475;
- 8cK. K. Hollister, A. Molino, G. Breiner, J. E. Walley, K. E. Wentz, A. M. Conley, D. A. Dickie, D. J. Wilson, R. J. Gilliard Jr, J. Am. Chem. Soc. 2022, 144, 590;
- 8dH. Braunschweig, T. Dellermann, R. D. Dewhurst, B. Hupp, T. Kramer, J. D. Mattock, J. Mies, A. K. Phukan, A. Steffen, A. Vargas, J. Am. Chem. Soc. 2017, 139, 4887;
- 8eM. Dömling, T. E. Stennett, A. Belyaev, B. Hupp, C. Claes, S. Ullrich, S. Endres, E. Freytag, T. Kramer, T. Kupfer, F. Schorr, T. Thiess, M. Arrowsmith, A. Steffen, H. Braunschweig, Inorg. Chem. 2022, 61, 14058.
- 9H. Amouri, Chem. Rev. 2023, 123, 230.
- 10
- 10aR. Jazzar, M. Soleilhavoup, G. Bertrand, Chem. Rev. 2020, 120, 4141;
- 10bJ. Beaudelot, S. Oger, S. Perusko, T.-A. Phan, T. Teunens, C. Moucheron, G. Evano, Chem. Rev. 2022, 122, 16365.
- 11G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch, S. Bräse, Adv. Mater. 2021, 33, 2005630.
- 12A. Ying, S. Gong, Chem. Eur. J. 2023, 29, e202301885.
- 13
- 13aY. Zhang, M. Schulz, M. Wächtler, M. Karnahl, B. Dietzek, Coord. Chem. Rev. 2018, 356, 127;
- 13bX.-L. Chen, C.-S. Lin, X.-Y. Wu, R. Yu, T. Teng, Q.-K. Zhang, Q. Zhang, W.-B. Yang, C.-Z. Lu, J. Mater. Chem. C 2015, 3, 1187.
- 14
- 14aC. Wegeberg, O. S. Wenger, JACS Au 2021, 1, 1860;
- 14bL. C.-C. Lee, K. K.-W. Lo, J. Am. Chem. Soc. 2022, 144, 14420;
- 14cQ. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photonics 2014, 8, 326;
- 14dA. Ito, M. Iwamura, E. Sakuda, Coord. Chem. Rev. 2022, 467, 214610.
- 15
- 15aR. Hamze, J. L. Peltier, D. Sylvinson, M. Jung, J. Cardenas, R. Haiges, M. Soleilhavoup, R. Jazzar, P. I. Djurovich, G. Bertrand, M. E. Thompson, Science 2019, 363, 601;
- 15bF. Chotard, V. Sivchik, M. Linnolahti, M. Bochmann, A. S. Romanov, Chem. Mater. 2020, 32, 6114;
- 15cM. Gernert, L. Balles-Wolf, F. Kerner, U. Müller, A. Schmiedel, M. Holzapfel, C. M. Marian, J. Pflaum, C. Lambert, A. Steffen, J. Am. Chem. Soc. 2020, 142, 8897;
- 15dS. Lin, Q. Peng, Q. Ou, Z. Shuai, Inorg. Chem. 2019, 58, 14403;
- 15eX.-F. Song, Z.-W. Li, W.-K. Chen, Y.-J. Gao, G. Cui, Inorg. Chem. 2022, 61, 7673;
- 15fK. A. Spence, J. V. Chari, M. Di Niro, R. B. Susick, N. Ukwitegetse, P. I. Djurovich, M. E. Thompson, N. K. Garg, Chem. Sci. 2022, 13, 5884;
- 15gA. S. Romanov, L. Yang, S. T. Jones, D. Di, O. J. Morley, B. H. Drummond, A. P. Reponen, M. Linnolahti, D. Credgington, M. Bochmann, Chem. Mater. 2019, 31, 3613;
- 15hP. J. Conaghan, C. S. Matthews, F. Chotard, S. T. Jones, N. C. Greenham, M. Bochmann, D. Credgington, A. S. Romanov, Nat. Commun. 2020, 11, 1758.
- 16
- 16aR. Hamze, S. Shi, S. C. Kapper, D. S. M. Ravinson, L. Estergreen, M.-C. Jung, A. C. Tadle, R. Haiges, P. I. Djurovich, J. L. Peltier, R. Jazzar, G. Bertrand, S. E. Bradforth, M. E. Thompson, J. Am. Chem. Soc. 2019, 141, 8616;
- 16bS. Shi, M. Jung, C. Coburn, A. Tadle, M. Sylvinson, P. I. Djurovich, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2019, 141, 3576;
- 16cC. N. Muniz, C. A. Archer, J. S. Applebaum, A. Alagaratnam, J. Schaab, P. I. Djurovich, M. E. Thompson, J. Am. Chem. Soc. 2023, 145, 13846;
- 16dC. N. Muniz, J. Schaab, A. Razgoniaev, P. I. Djurovich, M. E. Thompson, J. Am. Chem. Soc. 2022, 144, 17916;
- 16eA. Ying, Y.-H. Huang, C.-H. Lu, Z. Chen, W.-K. Lee, X. Zeng, T. Chen, X. Cao, C.-C. Wu, S. Gong, ACS Appl. Mater. Interfaces 2021, 13, 13478;
- 16fA. Ying, Y. Tan, S. Gong, Adv. Opt. Mater. 2024, 2303333.
- 17
- 17aH. J. Wang, Y. Liu, B. Yu, S. Q. Song, Y. X. Zheng, K. Liu, P. Chen, H. Wang, J. Jiang, T. Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202217195;
- 17bJ. Li, L. Wang, Z. Zhao, X. Li, X. Yu, P. Huo, Q. Jin, Z. Liu, Z. Bian, C. Huang, Angew. Chem. Int. Ed. 2020, 59, 8210;
- 17cJ. Ma, J. Schaab, S. Paul, S. R. Forrest, P. I. Djurovich, M. E. Thompson, J. Am. Chem. Soc. 2023, 145, 20097;
- 17dA. Ruduss, A. Jece, K. A. Stucere, K.-W. Chen, B. Turovska, S. Belyakov, A. Vembris, C.-H. Chang, K. Traskovskis, J. Mater. Chem. C 2024, 12, 2968;
- 17eA. Ruduss, B. Turovska, S. Belyakov, K. A. Stucere, A. Vembris, G. Baryshnikov, H. Ågren, J.-C. Lu, W.-H. Lin, C.-H. Chang, ACS Appl. Mater. Interfaces 2022, 14, 15478.
- 18
- 18aT.-Y. Li, J. Schaab, P. I. Djurovich, M. E. Thompson, J. Mater. Chem. C 2022, 10, 4674;
- 18bQ. Gu, F. Chotard, J. Eng, A.-P. M. Reponen, I. J. Vitorica-Yrezabal, A. W. Woodward, T. J. Penfold, D. Credgington, M. Bochmann, A. S. Romanov, Chem. Mater. 2022, 34, 7526;
- 18cA. S. Romanov, S. T. Jones, Q. Gu, P. J. Conaghan, B. H. Drummond, J. Feng, F. Chotard, L. Buizza, M. Foley, M. Linnolahti, D. Credgington, M. Bochmann, Chem. Sci. 2020, 11, 435.
- 19
- 19aA. Ying, Y. Ai, C. Yang, S. Gong, Angew. Chem. Int. Ed. 2022, 61, e202210490;
- 19bA. M. Muthig, J. Wieland, C. Lenczyk, S. Koop, J. Tessarolo, G. H. Clever, B. Hupp, A. Steffen, Chem. Eur. J. 2023, 29, e202300946.
- 20T.-Y. Li, S.-J. Zheng, P. I. Djurovich, M. E. Thompson, Chem. Rev. 2024, 124, 4332.
- 21
- 21aJ. Hossain, R. Akhtar, S. Khan, Polyhedron 2021, 201, 115151;
- 21bD. Di, A. S. Romanov, L. Yang, J. M. Richter, J. P. H. Rivett, S. Jones, T. H. Thomas, M. A. Jalebi, R. H. Friend, M. Linnolahti, M. Bochmann, D. Credgington, Science 2017, 356, 159.
- 22
- 22aG. Tan, B. Blom, D. Gallego, M. Driess, Organometallics 2014, 33, 363;
- 22bS. Khan, S. K. Ahirwar, S. Pal, N. Parvin, N. Kathewad, Organometallics 2015, 34, 5401;
- 22cM. Ghosh, S. Tothadi, S. Khan, Organometallics 2021, 40, 3201;
- 22dN. Parvin, S. Pal, J. Echeverria, S. Alvarez, S. Khan, Chem. Sci. 2018, 9, 4333;
- 22eN. Parvin, J. Hossain, A. George, P. Parameswaran, S. Khan, Chem. Commun. 2020, 56, 273;
- 22fA. N. Paesch, A. K. Kreyenschmidt, R. Herbst-Irmer, D. Stalke, Inorg. Chem. 2019, 58, 7000;
- 22gM. Nazish, M. M. Siddiqui, S. K. Sarkar, A. Munch, C. M. Legendre, R. Herbst-Irmer, D. Stalke, H. W. Roesky, Chem. Eur. J. 2021, 27, 1744.
- 23M. Ghosh, K. Gaurav, P. Panwaria, S. Tothadi, S. Khan, ChemRxiv. 2024, DOI: 10.26434/chemrxiv-2024-7rpw5.
- 24R. Tang, S. Xu, T.-L. Lam, G. Cheng, L. Du, Q. Wan, J. Yang, F.-F. Hung, K.-H. Low, D. L. Phillips, C.-M. Che, Angew. Chem. Int. Ed. 2022, 61, e202203982.
- 25E. Y.-T. Li, T.-Y. Jiang, Y. Chi, P.-T. Chou, Phys. Chem. Chem. Phys. 2014, 16, 26184.
- 26H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev. 2011, 255, 2622.
- 27T.-Y. Li, D. S. M. Ravinson, R. Haiges, P. I. Djurovich, M. E. Thompson, J. Am. Chem. Soc. 2020, 142, 6158.
- 28B. Sun, K.-N. Tong, X. Chen, J.-L. He, H. Liu, M.-K. Fung, J. Fan, J. Mater. Chem. C 2021, 9, 7706.
- 29M. J. Genzink, J. B. Kidd, W. B. Swords, T. P. Yoon, Chem. Rev. 2021, 122, 1654.
- 30M. Baba, J. Phys. Chem. A 2011, 115, 9514.
- 31A. Ruduss, S. Belyakov, K. A. Stucere, A. Vembris, K. Traskovskis, Phys. Chem. Chem. Phys. 2023, 25, 3220.
- 32C. Murawski, K. Leo, M. C. Gather, Adv. Mater. 2013, 25, 6801.
- 33
- 33aX. Yang, G. Zhou, W.-Y. Wong, Chem. Soc. Rev. 2015, 44, 8484;
- 33bM. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444.
- 34N. Li, Z. Chen, C. Zhou, F. Ni, Z. Huang, X. Cao, C. Yang, Adv. Mater. 2023, 35, 2300510.
- 35A. C. Brannan, H. H. Cho, A. P. M. Reponen, S. Gorgon, N. L. Phuoc, M. Linnolahti, N. C. Greenham, A. S. Romanov, Adv. Mater. 2024, 2404357.
- 36X.-F. Song, L.-Y. Peng, W.-K. Chen, Y.-J. Gao, G. Cui, Phys. Chem. Chem. Phys. 2023, 25, 29603.
- 37A.-P. M. Reponen, F. Chotard, A. Lempelto, V. Shekhovtsev, D. Credgington, M. Bochmann, M. Linnolahti, N. C. Greenham, A. S. Romanov, Adv. Opt. Mater. 2022, 10, 2200312.
- 38Y. Feng, J. Cheng, L. Zhou, X. Zhou, H. Xiang, Analyst 2012, 137, 4885.
- 39H. Bian, X. Song, N. Li, H. Man, Y. Xiao, J. Mater. Chem. B 2018, 6, 1699.
- 40
- 40aA. Chatterjee, J. Chatterjee, S. Sappati, R. Tanwar, M. D. Ambhore, H. Arfin, R. M. Umesh, M. Lahiri, P. Mandal, P. Hazra, Chem. Sci. 2023, 14, 13832;
- 40bS. Saikia, A. Ghosh, A. Nag, Angew. Chem. Int. Ed. 2023, 62, e202307689.