Synergistic Al−Al Dual-Atomic Site for Efficient Artificial Nitrogen Fixation
Sudip Biswas
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
These authors contributed equally
Search for more papers by this authorJingwen Zhou
Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
These authors contributed equally
Search for more papers by this authorXue-Lu Chen
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorChen Chi
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYi-An Pan
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorPeixin Cui
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
Search for more papers by this authorCorresponding Author
Jian Li
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Chungen Liu
Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Xing-Hua Xia
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorSudip Biswas
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
These authors contributed equally
Search for more papers by this authorJingwen Zhou
Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
These authors contributed equally
Search for more papers by this authorXue-Lu Chen
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorChen Chi
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYi-An Pan
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorPeixin Cui
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
Search for more papers by this authorCorresponding Author
Jian Li
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Chungen Liu
Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Xing-Hua Xia
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorGraphical Abstract
A metal-metal bonded dual-atomic Al−Al site was designed and synthesized on a nitrogen-doped porous carbon matrix for the electrocatalytic conversion of N2 to NH3. The catalyst with the bonded Al2-pair site exhibited high Faradaic efficiency and selective NH3 generation. The mechanism follows a six-electrons transfer pathway for the selective generation of NH3, as revealed by operando surface-enhanced IR spectroelectrochemistry.
Abstract
Synthesis of ammonia by electrochemical nitrogen reduction reaction (NRR) is a promising alternative to the Haber–Bosch process. However, it is commonly obstructed by the high activation energy. Here, we report the design and synthesis of an Al−Al bonded dual atomic catalyst stabilized within an amorphous nitrogen-doped porous carbon matrix (Al2NC) with high NRR performance. The dual atomic Al2-sites act synergistically to catalyze the complex multiple steps of NRR through adsorption and activation, enhancing the proton-coupled electron transfer. This Al2NC catalyst exhibits a high Faradaic efficiency of 16.56±0.3 % with a yield rate of 29.22±1.2 μg h−1 mgcat−1. The dual atomic Al2NC catalyst shows long-term repeatable, and stable NRR performance. This work presents an insight into the identification of synergistic dual atomic catalytic site and mechanistic pathway for the electrochemical conversion of N2 to NH3.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202405493-sup-0001-misc_information.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Liu, A. Elgowainy, M. Wang, Green Chem. 2020, 22, 5751–5761;
- 1bY. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 2019, 31, 1806482.
- 2F. Gomollón-Bel, Chem. Int. 2021, https://doi.org/10.1515/ci-2021-0404.
- 3H. Huang, F. Gong, Y. Wang, H. Wang, X. Wu, W. Lu, R. Zhao, H. Chen, X. Shi, A. M. Asiri, T. Li, Q. Liu, X. Sun, Nano Res. 2019, 12, 1093–1098.
- 4J. Wang, L. Yu, L. Hu, G. Chen, H. Xin, X. Feng, Nat. Commun. 2018, 9, 1795.
- 5
- 5aW. Tong, B. Huang, P. Wang, L. Li, Q. Shao, X. Huang, Angew. Chem. Int. Ed. 2020, 59, 2649–2653;
- 5bS. Murmu, S. Paul, S. Kapse, R. Thapa, S. Chattopadhyay, N. Abharana, S. N. Jha, D. Bhattacharyya, U. K. Ghorai, J. Mater. Chem. A 2021, 9, 14477.
- 6X. Yan, D. Liu, H. Cao, F. Hou, J. Liang, S. X. Dou, Small Methods 2019, 3, 1800501–1800522.
- 7Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, X. Bao, Chem. Rev. 2019, 119, 1806–1854.
- 8S. Ding, M. J. Hülsey, J. Perez-Ramírez, N. Yan, Joule 2019, 3, 2897–2929.
- 9Y. Pan, C. Zhang, Z. Liu, C. Chen, Y. Li, Matter. 2020, 2, 78–110.
- 10Z. Li, S. Ji, Y. Liu, X. Cao, S. Tian, Y. Chen, Z. Niu, Y. Li, Chem. Rev. 2020, 120, 623–682.
- 11J. Zhao, Z. Chen, J. Am. Chem. Soc. 2017, 139, 12480–12487.
- 12
- 12aX. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2019, 141, 9664–9672;
- 12bU. K. Ghorai, S. Paul, B. Ghorai, A. Adalder, S. Kapse, R. Thapa, A. Nagendra, A. Gain, ACS Nano 2021, 15, 5230–5239.
- 13
- 13aW. Zang, T. Yang, H. Zou, S. Xi, H. Zhang, X. Liu, Z. Kou, Y. Du, Y. P. Feng, L. Shen, L. Duan, J. Wang, S. J. Pennycook, ACS Catal. 2019, 9, 10166–10173;
- 13bY. Gu, B. Xi, W. Tian, H. Zhang, Q. Fu, S. Xiong, Adv. Mater. 2021, 33, 2100429;
- 13cL. Han, X. Liu, J. Chen, R. Lin, H. Liu Fang Lü, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, H. L. Xin, Angew. Chem. Int. Ed. 2019, 58, 2321–2325;
- 13dY. Li, J. Li, J. Huang, J. Chen, Y. Kong, B. Yang, Z. Li, L. Lei, G. Chai, Z. Wen, L. Dai, Y. Hou, Angew. Chem. 2021, 133, 9160–9167.
- 14
- 14aXia, L. Yang, J. Wang, H. Zhao, R. Chen, W. H. Fang, A. M. Asiri, F. Xie, G. Cui, X. Sun, Chem. Commun. 2019, 55, 3371;
- 14bP. Huang, Z. Cheng, L. Zeng, J. Yu, L. Tan, P. Mohapatra, L.-S. Fan, Y. Zhu, ACS Catal. 2020, 10, 14928–14935;
- 14cD. Yuan, Z. Wei, P. Han, C. Yang, L. Huang, Z. Gu, Y. Ding, J. Ma, G. Zheng, J. Mater. Chem. A 2019, 7, 16979;
- 14dC. Chen, D. Yan, Y. Wang, Y. Zhou, Y. Zou, L. Yafei, S. Wang, Small 2019, 15, 1805029.
- 15
- 15aY. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 52–65;
- 15bE. Skulason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jonsson, J. K. Norskov, Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.
- 16P. P. Power, Nature 2010, 463, 171–177.
- 17Y. Sun, Y. Wang, H. Li, W. Zhang, X.-M. Song, D.-M. Feng, X. Sun, B. Jia, H. Mao, T. Ma, J. Energy Chem. 2021, 62, 51–70.
- 18C. Ling, X. Niu, Q. Li, A. Du, J. Wang, J. Am. Chem. Soc. 2018, 140, 14161–14168.
- 19X. Lv, W. Wei, F. Li, B. Huang, Y. Dai, Nano Lett. 2019, 19, 6391–6399.
- 20Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-. A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang, C.-H. Yan, Nat. Catal. 2019, 2, 448–456.
- 21X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc. 2020, 142, 5709–5721.
- 22J. Jiao, R. Lin, S. Liu, W. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S. Hung, H. Chen, L. Zheng, Q. Lu, X. Yang, B. Xu, H. Xiao, J. Li, D. Wang, Q. Peng, C. Chen, Y. Li, Nat. Chem. 2019, 11, 222–228.
- 23B. An, Z. Li, Y. Song, J. Zhang, L. Zeng, C. Wang, W. Lin, Nat. Catal. 2019, 2, 709–717.
- 24X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 2019, 4, 690–699.
- 25N. Z. Cao, K. Chen, J. Zang, J. Xu, J. Zhong, J. Luo, X. Xu, G. Zheng, Nat. Commun. 2019, 10, 2877–2888.
- 26S. Wang, L. Shi, X. Bai, Q. Li, C. Ling, J. Wang, ACS Cent. Sci. 2020, 6, 1762–1771.
- 27L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S.-Z. Qiao, ACS Catal. 2019, 9, 2902–2908.
- 28
- 28aY. Fu, P. Richardson, K. Li, H. Yu, B. Yu, S. Donne, E. Kisi, T. Ma, Nano-Micro Lett. 2020, 12, 65;
- 28bY. Fu, K. Li, M. Batmunkh, H. Yu, S. Donne, B. Jia, T. Ma, ACS Appl. Mater. Interfaces 2020, 12, 44830–44839.
- 29
- 29aY.-H. Tian, S. Hu, X. Sheng, Y. Duan, J. Jakowski, B. G. Sumpter, J. Huang, J. Phys. Chem. Lett. 2018, 9, 570–576;
- 29bA. Sinha, S. Banerjee, J. Gangopadhyay, Coord. Chem. Rev. 2022, 463, 214519.
- 30H.-Y. Yu, X.-C. Wang, S. X.-A. Zhang, Appl. Surf. Sci. 2021, 563, 150328.
- 31
- 31aK. Eskandari, F. Ebadinejad, Mol. Phys. 2018, 116, 1369–1376;
- 31bQ. Wang, C. Wei, L. M. Pe'rez, W. J. Rogers, M. B. Hall, M. Sam Mannan, J. Phys. Chem. A 2010, 114, 9262–9269;
- 31cL. Jiao, J. Li, L. La-R Richard, Q. Sun, T. Stracensky, E. Liu, M. T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D. A. Cullen, J. H. Park, M. Ferrandon, D. J. Myers, F. Jaouen, Q. Jia, Nat. Mater. 2021, 20, 1385–1391.
- 32P. Bag, A. Porzelt, P. J. Altmann, S. Inoue, J. Am. Chem. Soc. 2017, 139, 14384–14387.
- 33S. Biswas, R. Das, D. Chakraborty, R. Bandyopadhyay, P. Pramanik, Electroanalysis 2015, 27, 1253–1261.
- 34Y. Qin, H.-H. Wu, L. A. Zhang, X. Zhou, Y. Bu, W. Zhang, F. Chu, Y. Li, Y. Kong, Q. Zhang, D. Ding, Y. Tao, Y. Li, M. Liu, C. Z. Xiao, ACS Catal. 2019, 9, 610–619.
- 35S. Biswas, Y. Chen, Y. Xie, X. Sun, Y. Wang, Anal. Chem. 2020, 92, 4566–4572.
- 36Y. Fu, K. Li, M. Batmunkh, H. Yu, S. Donne, B. Jia, T. Ma, ACS Appl. Mater. Interfaces 2020, 12, 44830–44839.
- 37
- 37aG. Ramis, L. Yi, G. Busca Catal. Today 1996, 28, 373–380;
- 37bS. Govindrajan, S. T. Aruna, in Inorganic Hydrazine Derivatives: Synthesis, Properties and Applications, First Edition.Chapter 5: Hydrazinium Metal Complexes, (Eds.: K. C. Patil, T. M. Rattan) John Wiley & Sons, Ltd. 2014 pp. 171–218. https://doi.org/10.1002/9781118693599.ch05;
- 37cY. Yao, S. Zhu, H. Wang, H. Li, M. Shao, J. Am. Chem. Soc. 2018, 140, 1496–1501;
- 37dR. Cheng, Y. Shu, M. Zheng, L. Li, J. Sun, X. Wang, T. Zhang, J. Catal. 2007, 249, 397–400.