Gas-Induced Electrical and Magnetic Modulation of Two-Dimensional Conductive Metal–Organic Framework
Corresponding Author
Dr. Zheng Meng
Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755 USA
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorDr. Robert M. Stolz
Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755 USA
Search for more papers by this authorDr. Lygia Silva De Moraes
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125 USA
Search for more papers by this authorChristopher G. Jones
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125 USA
Search for more papers by this authorAileen M. Eagleton
Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Hosea M. Nelson
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Katherine A. Mirica
Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755 USA
Search for more papers by this authorCorresponding Author
Dr. Zheng Meng
Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755 USA
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorDr. Robert M. Stolz
Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755 USA
Search for more papers by this authorDr. Lygia Silva De Moraes
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125 USA
Search for more papers by this authorChristopher G. Jones
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125 USA
Search for more papers by this authorAileen M. Eagleton
Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Hosea M. Nelson
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Katherine A. Mirica
Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755 USA
Search for more papers by this authorGraphical Abstract
Exposure to gaseous molecules can induce characteristic electrical and magnetic property changes of a semiconductive metal–organic framework (MOF). The underlying interaction mechanism responsible for the electrical and magnetic modulation is found related to the intrinsic physical and chemical properties of the participating molecules which cause specific electronic and structural changes of the MOF.
Abstract
Controlled modulation of electronic and magnetic properties in stimuli-responsive materials provides valuable insights for the design of magnetoelectric or multiferroic devices. This paper demonstrates the modulation of electrical and magnetic properties of a semiconductive, paramagnetic metal−organic framework (MOF) Cu3(C6O6)2 with small gaseous molecules, NH3, H2S, and NO. This study merges chemiresistive and magnetic tests to reveal that the MOF undergoes simultaneous changes in electrical conductance and magnetization that are uniquely modulated by each gas. The features of response, including direction, magnitude, and kinetics, are modulated by the physicochemical properties of the gaseous molecules. This study advances the design of multifunctional materials capable of undergoing simultaneous changes in electrical and magnetic properties in response to chemical stimuli.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202404290-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. A. Stuart, W. T. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101–113;
- 1bM. Wei, Y. Gao, X. Li, M. J. Serpe, Polym. Chem. 2017, 8, 127–143;
- 1cM. Mrinalini, S. Prasanthkumar, ChemPlusChem 2019, 84, 1103–1121;
- 1dY. J. Ma, X. Fang, G. Xiao, D. Yan, Angew. Chem. Int. Ed. 2021, 61, e202114100 ;
- 1eB. Zhou, Z. Qi, D. Yan, Angew. Chem. Int. Ed. 2022, 61, e202208735;
- 1fM. Jeon, M. Kim, J.-S. Lee, H. Kim, S.-J. Choi, H. R. Moon, J. Kim, ACS Sens. 2023, 8, 3068–3075.
- 2Z. Meng, R. M. Stolz, L. Mendecki, K. A. Mirica, Chem. Rev. 2019, 119, 478–598.
- 3
- 3aH. Gu, X. Zhang, H. Wei, Y. Huang, S. Wei, Z. Guo, Chem. Soc. Rev. 2013, 42, 5907–5943;
- 3bJ. F. Fennell, Jr., S. F. Liu, J. M. Azzarelli, J. G. Weis, S. Rochat, K. A. Mirica, J. B. Ravnsbaek, T. M. Swager, Angew. Chem. Int. Ed. 2016, 55, 1266–1281;
- 3cM. J. P. J. W. Orton, Rep. Prog. Phys. 1980, 43, 81–126;
- 3dX. Yang, X. Lin, Y. S. Zhao, D. Yan, Chem. Eur. J. 2018, 24, 6484–6493.
- 4G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn, Phys. Rev. B: Condens. Matter Mater. Phys. 1989, 39, 4828–4830.
- 5C. Yang, R. Dong, M. Wang, P. S. Petkov, Z. Zhang, M. Wang, P. Han, M. Ballabio, S. A. Brauninger, Z. Liao, J. Zhang, F. Schwotzer, E. Zschech, H. H. Klauss, E. Canovas, S. Kaskel, M. Bonn, S. Zhou, T. Heine, X. Feng, Nat. Commun. 2019, 10, 3260.
- 6
- 6aL. E. Darago, M. L. Aubrey, C. J. Yu, M. I. Gonzalez, J. R. Long, J. Am. Chem. Soc. 2015, 137, 15703–15711;
- 6bR. Jeon Ie, B. Negru, R. P. Van Duyne, T. D. Harris, J. Am. Chem. Soc. 2015, 137, 15699–15702;
- 6cJ. Zhang, W. Kosaka, Q. Liu, N. Amamizu, Y. Kitagawa, H. Miyasaka, J. Am. Chem. Soc. 2023, 145, 26179–26189.
- 7
- 7aL. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105–1125;
- 7bH. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673–674.
- 8M. Ko, L. Mendecki, K. A. Mirica, Chem. Commun. 2018, 54, 7873–7891.
- 9
- 9aH. Furukawa, K. E. Cordova, M. O′Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 9bO. M. Yaghi, J. Am. Chem. Soc. 2016, 138, 15507–15509;
- 9cO. M. Yaghi, M. J. Kalmutzki, C. S. Diercks, Introduction to Reticular Chemistry, Wiley-VCH, 2019, p. 57–81;
10.1002/9783527821099.ch3 Google Scholar
- 9dL. Sun, M. G. Campbell, M. Dinca, Angew. Chem. Int. Ed. 2016, 55, 3566–3579;
- 9eE. A. Dolgopolova, O. A. Ejegbavwo, C. R. Martin, M. D. Smith, W. Setyawan, S. G. Karakalos, C. H. Henager, H. C. Zur Loye, N. B. Shustova, J. Am. Chem. Soc. 2017, 139, 16852–16861.
- 10
- 10aL. S. Xie, G. Skorupskii, M. Dinca, Chem. Rev. 2020, 120, 8536–8580;
- 10bL. Sun, M. G. Campbell, M. Dincă, Angew. Chem. Int. Ed. 2016, 55, 3566–3579.
- 11
- 11aG. Minguez Espallargas, E. Coronado, Chem. Soc. Rev. 2018, 47, 533–557;
- 11bA. E. Thorarinsdottir, T. D. Harris, Chem. Rev. 2020, 120, 8716–8789.
- 12
- 12aJ. G. Calvert, A. Lazrus, G. L. Kok, B. G. Heikes, J. G. Walega, J. Lind, C. A. Cantrell, Nature 1985, 317, 27–35;
- 12bR. Kant, S. Bhattacharya, in Environmental, Chemical and Medical Sensors, 2018, pp. 9–30;
10.1007/978-981-10-7751-7_2 Google Scholar
- 12cA. K. Mustafa, M. M. Gadalla, S. H. Snyder, Sci. Signaling 2009, 2, re2;
- 12dS. Edelson, Science-Business eXchange 2010, 3, 578–578;
10.1038/scibx.2010.578 Google Scholar
- 12eM. A. Singer, Med. Hypotheses 2001, 57, 740–744.
- 13
- 13aV. Rubio-Gimenez, N. Almora-Barrios, G. Escorcia-Ariza, M. Galbiati, M. Sessolo, S. Tatay, C. Marti-Gastaldo, Angew. Chem. Int. Ed. 2018, 57, 15086–15090;
- 13bR. M. Stolz, A. Mahdavi-Shakib, B. G. Frederick, K. A. Mirica, Chem. Mater. 2020, 32, 7639–7652;
- 13cA. M. Eagleton, M. Ko, R. M. Stolz, N. Vereshchuk, Z. Meng, L. Mendecki, A. M. Levenson, C. Huang, K. C. MacVeagh, A. Mahdavi-Shakib, J. J. Mahle, G. W. Peterson, B. G. Frederick, K. A. Mirica, J. Am. Chem. Soc. 2022, 144, 23297–23312.
- 14
- 14aJ. Park, A. C. Hinckley, Z. Huang, D. Feng, A. A. Yakovenko, M. Lee, S. Chen, X. Zou, Z. Bao, J. Am. Chem. Soc. 2018, 140, 14533–14537;
- 14bM. Choe, J. Y. Koo, I. Park, H. Ohtsu, J. H. Shim, H. C. Choi, S. S. Park, J. Am. Chem. Soc. 2022, 144, 16726–16731.
- 15Z. Meng, C. G. Jones, S. Farid, I. U. Khan, H. M. Nelson, K. A. Mirica, Angew. Chem. Int. Ed. 2022, 61, e202113569.
- 16Q. Chen, O. Adeniran, Z. F. Liu, Z. Zhang, K. Awaga, J. Am. Chem. Soc. 2023, 145, 1062–1071.
- 17
- 17aM. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O. M. Yaghi, Chem. Mater. 2012, 24, 3511–3513;
- 17bJ.-H. Dou, M. Q. Arguilla, Y. Luo, J. Li, W. Zhang, L. Sun, J. L. Mancuso, L. Yang, T. Chen, L. R. Parent, G. Skorupskii, N. J. Libretto, C. Sun, M. C. Yang, P. V. Dip, E. J. Brignole, J. T. Miller, J. Kong, C. H. Hendon, J. Sun, M. Dincă, Nat. Mater. 2020, 20, 222–228.
- 18S. Kang, M. Jeon, J. Kim, ACS Sens. 2023, 8, 3448–3457.
- 19R. Yamdagni, P. Kebarle, J. Am. Chem. Soc. 2002, 98, 1320–1324.
- 20F. Cataldo, Eur. Chem. Bull. 2015, 4, 92–97.
- 21P. C. Ford, J. C. M. Pereira, K. M. Miranda, in Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II, 2013, pp. 99–135.
10.1007/430_2013_117 Google Scholar
- 22M. S. Yao, X. J. Lv, Z. H. Fu, W. H. Li, W. H. Deng, G. D. Wu, G. Xu, Angew. Chem. Int. Ed. 2017, 56, 16510–16514.
- 23F. I. Bohrer, A. Sharoni, C. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, W. C. Trogler, J. Am. Chem. Soc. 2007, 129, 5640–5646.
- 24J. Kong, A. Javey, Carbon Nanotube Electronics, Springer New York, NY, 2009, p. 191–209.
10.1007/978-0-387-69285-2 Google Scholar
- 25V. P. Verma, S. Das, S. Hwang, H. Choi, M. Jeon, W. Choi, Mater. Sci. Eng. B 2010, 171, 45–49.
- 26J. Oitmaa, C. Hamer, W. Zheng, Series Expansion Methods for Strongly Interacting Lattice Models, Cambridge University Press, 2010, p. 1–25.
- 27M. B. Mitchell, Fundamentals and Applications of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy in Structure-Property Relations in Polymers, American Chemical Society, 1993, pp. 351–375.
- 28M. Chiesa, E. Giamello, M. Che, Chem. Rev. 2010, 110, 1320–1347.
- 29Y. Ma, W. Lu, X. Han, Y. Chen, I. da Silva, D. Lee, A. M. Sheveleva, Z. Wang, J. Li, W. Li, M. Fan, S. Xu, F. Tuna, E. J. L. McInnes, Y. Cheng, S. Rudic, P. Manuel, M. D. Frogley, A. J. Ramirez-Cuesta, M. Schroder, S. Yang, J. Am. Chem. Soc. 2022, 144, 8624–8632.
- 30A. Galtayries, E. Laksono, J. M. Siffre, C. Argile, P. Marcus, Surf. Interface Anal. 2000, 30, 140–144.
- 31B. Kozlevcar, P. Segedin, Croat. Chem. Acta 2008, 81, 369–379.
- 32E. Garribba, G. Micera, J. Chem. Educ. 2006, 83, 1229.
- 33
- 33aA. Galtayries, J. P. Bonnelle, Surf. Interface Anal. 2004, 23, 171–179;
- 33bM. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, RSC Adv. 2015, 5, 75953–75963;
- 33cE. Martínez-Ahumada, A. López-Olvera, V. Jancik, J. E. Sánchez-Bautista, E. González-Zamora, V. Martis, D. R. Williams, I. A. Ibarra, Organometallics 2020, 39, 883–915;
- 33dA. López-Olvera, J. G. Flores, J. Aguilar-Pliego, C. K. Brozek, A. Gutiérrez-Alejandre, I. A. Ibarra, Chem. Mater. 2021, 33, 6269–6276.
- 34
- 34aP. Basu, J. Chem. Educ. 2001, 78, 666;
- 34bS. Ye, Magn. Reson. Lett. 2023, 3, 43–60.
- 35
- 35aM. K. Smith, K. E. Jensen, P. A. Pivak, K. A. Mirica, Chem. Mater. 2016, 28, 5264–5268;
- 35bA.-Q. Wu, W.-Q. Wang, H.-B. Zhan, L.-A. Cao, X.-L. Ye, J.-J. Zheng, P. N. Kumar, K. Chiranjeevulu, W.-H. Deng, G.-E. Wang, M.-S. Yao, G. Xu, Nano Res. 2020, 14, 438–443.
- 36K. Sakaushi, H. Nishihara, Acc. Chem. Res. 2021, 54, 3003–3015.
- 37R. Wang, C. H. Ko, A. M. Brugh, Y. Bai, M. D. E. Forbes, M. J. Therien, J. Phys. Chem. A 2020, 124, 7411–7415.
- 38H. M. McConnell, J. Chem. Phys. 1963, 39, 1910–1910.