Enzymatic Synthesis of TNA Protects DNA Nanostructures
Bohe Qin
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorQi Wang
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorYuang Wang
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorFeng Han
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorHaiyan Wang
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Shuoxing Jiang
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Hanyang Yu
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorBohe Qin
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorQi Wang
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorYuang Wang
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorFeng Han
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorHaiyan Wang
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Shuoxing Jiang
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Hanyang Yu
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorGraphical Abstract
Terminal deoxynucleotidyl transferase (TdT) accepts threose nucleic acid (TNA) nucleotide substrates, and catalyzes de novo synthesis of TNA on the 3’ ends of DNA oligonucleotides. The TNA extension protects DNAs from nuclease digestion, and the DNA-TNA chimeras are used directly as staple strands in the self-assembly of DNA origami nanostructures (DONs). The TNA-shielded DONs are more biologically stable under the physiological environment.
Abstract
Xeno-nucleic acids (XNAs) are synthetic genetic polymers with improved biological stabilities and offer powerful molecular tools such as aptamers and catalysts. However, XNA application has been hindered by a very limited repertoire of tool enzymes, particularly those that enable de novo XNA synthesis. Here we report that terminal deoxynucleotide transferase (TdT) catalyzes untemplated threose nucleic acid (TNA) synthesis at the 3’ terminus of DNA oligonucleotide, resulting in DNA-TNA chimera resistant to exonuclease digestion. Moreover, TdT-catalyzed TNA extension supports one-pot batch preparation of biostable chimeric oligonucleotides, which can be used directly as staple strands during self-assembly of DNA origami nanostructures (DONs). Such TNA-protected DONs show enhanced biological stability in the presence of exonuclease I, DNase I and fetal bovine serum. This work not only expands the available enzyme toolbox for XNA synthesis and manipulation, but also provides a promising approach to fabricate DONs with improved stability under the physiological condition.
Conflict of interests
H. Y., B. Q., Q. W. and S. J. have filed a patent regarding the preparation of TNA-modified DNAs using TdT-catalyzed reactions and the use of such chimeric TNA-DNAs in various applications.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202317334-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. C. Chaput, Acc. Chem. Res. 2021, 54, 1056–1065;
- 1bJ. C. Chaput, P. Herdewijn, Angew. Chem. Int. Ed. 2019, 58, 11570–11572;
- 1cN. Freund, M. J. L. J. Fürst, P. Holliger, Curr. Opin. Biotechnol. 2022, 74, 129–136.
- 2
- 2aG. Houlihan, S. Arangundy-Franklin, P. Holliger, Acc. Chem. Res. 2017, 50, 1079–1087;
- 2bK. Gerecht, N. Freund, W. Liu, Y. Liu, M. J. L. J. Fürst, P. Holliger, Annu. Rev. Biophys. 2023, 52, 413–432;
- 2cJ. C. Chaput, P. Herdewijn, M. Hollenstein, ChemBioChem 2020, 21, 1408–1411;
- 2dA. I. Taylor, V. B. Pinheiro, M. J. Smola, A. S. Morgunov, S. Peak-Chew, C. Cozens, K. M. Weeks, P. Herdewijn, P. Holliger, Nature 2015, 518, 427–430;
- 2eV. B. Pinheiro, A. I. Taylor, C. Cozens, M. Abramov, M. Renders, S. Zhang, J. C. Chaput, J. Wengel, S.-Y. Peak-Chew, S. H. McLaughlin, P. Herdewijn, P. Holliger, Science 2012, 336, 341–344.
- 3
- 3aZ. Zhang, S. Chen, Z. Li, H. Yu, Adv. Agrochem 2023, 2, 236–245;
- 3bP. Herdewijn, Angew. Chem. Int. Ed. 2001, 40, 2249–2251;
10.1002/1521-3773(20010618)40:12<2249::AID-ANIE2249>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 3cL. Orgel, Science 2000, 290, 1306–1307;
- 3dK. U. Schöning, P. Scholz, S. Guntha, X. Wu, R. Krishnamurthy, A. Eschenmoser, Science 2000, 290, 1347–1351.
- 4A. Nikoomanzar, N. Chim, E. J. Yik, J. C. Chaput, Q. Rev. Biophys. 2020, 53, E8.
- 5
- 5aC. M. McCloskey, J.-Y. Liao, S. Bala, J. C. Chaput, ACS Synth. Biol. 2019, 8, 282–286;
- 5bM. R. Dunn, C. M. McCloskey, P. Buckley, K. Rhea, J. C. Chaput, J. Am. Chem. Soc. 2020, 142, 7721–7724;
- 5cX. Li, Z. Li, H. Yu, Chem. Commun. 2020, 56, 14653–14656;
- 5dA. Nikoomanzar, D. Vallejo, E. J. Yik, J. C. Chaput, ACS Synth. Biol. 2020, 9, 1873–1881.
- 6
- 6aX. Li, Z. Zhang, F. Gao, Y. Ma, D. Wei, Z. Lu, S. Chen, M. Wang, Y. Wang, K. Xu, R. Wang, F. Xu, J.-Y. Chen, C. Zhu, Z. Li, H. Yu, X. Guan, J. Am. Chem. Soc. 2023, 145, 9334–9342;
- 6bY. Wang, Y. Wang, D. Song, X. Sun, Z. Zhang, X. Li, Z. Li, H. Yu, J. Am. Chem. Soc. 2021, 143, 8154–8163;
- 6cY. Wang, Y. Wang, D. Song, X. Sun, Z. Li, J.-Y. Chen, H. Yu, Nat. Chem. 2022, 14, 350–359;
- 6dH. Yu, S. Zhang, J. C. Chaput, Nat. Chem. 2012, 4, 183–187;
- 6eY. Wang, X. Liu, M. Shehabat, N. Chim, J. C. Chaput, Nucleic Acids Res. 2021, 49, 11438–11446.
- 7E. A. Motea, A. J. Berdis, Biochim. Biophys. Acta 2010, 1804, 1151–1166.
- 8
- 8aM. C. Culbertson, K. W. Temburnikar, S. P. Sau, J.-Y. Liao, S. Bala, J. C. Chaput, Bioorg. Med. Chem. Lett. 2016, 26, 2418–2421;
- 8bS. Matsuda, S. Bala, J.-Y. Liao, D. Datta, A. Mikami, L. Woods, J. M. Harp, J. A. Gilbert, A. Bisbe, R. M. Manoharan, M. Kim, C. S. Theile, D. C. Guenther, Y. Jiang, S. Agarwal, R. Maganti, M. K. Schlegel, I. Zlatev, K. Charisse, K. G. Rajeev, A. Castoreno, M. Maier, M. M. Janas, M. Egli, J. C. Chaput, M. Manoharan, J. Am. Chem. Soc. 2023, 145, 19691–19706.
- 9I. R. Lehman, J. Biol. Chem. 1960, 235, 1479–1487.
- 10
- 10aY. Yang, Q. Lu, Y. Chen, M. DeLuca, G. Arya, Y. Ke, S. Zauscher, Angew. Chem. Int. Ed. 2023, 62, e202311727;
- 10bY. Yang, Q. Lu, C. M. Huang, H. Qian, Y. Zhang, S. Deshpande, G. Arya, Y. Ke, S. Zauscher, Angew. Chem. Int. Ed. 2021, 60, 23241–23247.
- 11C. E. Castro, F. Kilchherr, D.-N. Kim, E. L. Shiao, T. Wauer, P. Wortmann, M. Bathe, H. Dietz, Nat. Methods 2011, 8, 221–229.
- 12T. Gerling, M. Kube, B. Kick, H. Dietz, Sci. Adv. 2018, 4, eaau1157.
- 13K. Yang, C. M. McCloskey, J. C. Chaput, ACS Synth. Biol. 2020, 9, 2936–2942.
- 14M. R. Dunn, J. C. Chaput, ChemBioChem 2016, 17, 1804–1808.
- 15J. Y. Kishi, T. E. Schaus, N. Gopalkrishnan, F. Xuan, P. Yin, Nat. Chem. 2017, 10, 155–164.
- 16
- 16aY. Kasahara, S. Kitadume, K. Morihiro, M. Kuwahara, H. Ozaki, H. Sawai, T. Imanishi, S. Obika, Bioorg. Med. Chem. Lett. 2010, 20, 1626–1629;
- 16bM. Kuwahara, S. Obika, H. Takeshima, Y. Hagiwara, J.-i. Nagashima, H. Ozaki, H. Sawai, T. Imanishi, Bioorg. Med. Chem. Lett. 2009, 19, 2941–2943.
- 17
- 17aM. Flamme, D. Katkevica, K. Pajuste, M. Katkevics, N. Sabat, S. Hanlon, I. Marzuoli, K. Püntener, F. Sladojevich, M. Hollenstein, Asian J. Org. Chem. 2022, 11, e202200384;
- 17bM. Flamme, S. Hanlon, I. Marzuoli, K. Püntener, F. Sladojevich, M. Hollenstein, Commun. Chem. 2022, 5, 68;
- 17cN. Sabat, D. Katkevica, K. Pajuste, M. Flamme, A. Stämpfli, M. Katkevics, S. Hanlon, S. Bisagni, K. Püntener, F. Sladojevich, M. Hollenstein, Front. Chem. 2023, 11, 1161462.
- 18
- 18aD. Ye, X. Zuo, C. Fan, Annu. Rev. Anal. Chem. 2018, 11, 171–195;
- 18bK. Chakraborty, A. T. Veetil, S. R. Jaffrey, Y. Krishnan, Annu. Rev. Biochem. 2016, 85, 349–373;
- 18cQ. Hu, H. Li, L. Wang, H. Gu, C. Fan, Chem. Rev. 2019, 119, 6459–6506;
- 18dM. Xiao, W. Lai, T. Man, B. Chang, L. Li, A. R. Chandrasekaran, H. Pei, Chem. Rev. 2019, 119, 11631–11717.
- 19A. R. Chandrasekaran, Nat. Chem. Rev. 2021, 5, 225–239.
- 20
- 20aV. Cassinelli, B. Oberleitner, J. Sobotta, P. Nickels, G. Grossi, S. Kempter, T. Frischmuth, T. Liedl, A. Manetto, Angew. Chem. Int. Ed. 2015, 54, 7795–7798;
- 20bJ.-W. Keum, H. Bermudez, Chem. Commun. 2009, 7036–7038;
- 20cC. Lin, Y. Ke, Z. Li, J. H. Wang, Y. Liu, H. Yan, Nano Lett. 2009, 9, 433–436;
- 20dQ. Liu, G. Liu, T. Wang, J. Fu, R. Li, L. Song, Z. G. Wang, B. Ding, F. Chen, ChemPhysChem 2017, 18, 2977–2980;
- 20eA. I. Taylor, F. Beuron, S. Y. Peak-Chew, E. P. Morris, P. Herdewijn, P. Holliger, ChemBioChem 2016, 17, 1107–1110;
- 20fQ. Wang, X. Chen, X. Li, D. Song, J. Yang, H. Yu, Z. Li, ACS Appl. Mater. Interfaces 2020, 12, 53592–53597.
- 21X. Lu, H. Wang, R. Chen, T. Wu, X. Wu, Y. Shang, Y. Wang, W. Tang, D. Liu, J. Liu, B. Ding, CCS Chem. 2023, 5, 2125–2139.