Sulfonyl Molecules Induced Oriented Lithium Deposition for Long-Term Lithium Metal Batteries
Da Zhang
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P. R. China
Contribution: Data curation (lead), Formal analysis (equal), Writing - original draft (lead)
Search for more papers by this authorRong Gu
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorYunxu Yang
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Data curation (supporting), Formal analysis (supporting), Investigation (equal)
Search for more papers by this authorJiaqi Ge
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Data curation (supporting), Formal analysis (supporting), Investigation (supporting), Software (equal)
Search for more papers by this authorCorresponding Author
Dr. Jinting Xu
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Data curation (supporting), Formal analysis (supporting), Project administration (equal), Software (equal), Supervision (supporting), Writing - review & editing (equal)
Search for more papers by this authorProf. Qunjie Xu
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Formal analysis (equal), Investigation (supporting)
Search for more papers by this authorDr. Penghui Shi
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Formal analysis (equal), Project administration (equal), Supervision (supporting), Visualization (equal)
Search for more papers by this authorCorresponding Author
Prof. Mingxian Liu
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P. R. China
Contribution: Formal analysis (supporting), Project administration (supporting), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Zaiping Guo
School of Chemical Engineering and Advanced Materials, the, University of Adelaide, Adelaide, SA 5005 Australia
Contribution: Conceptualization (equal), Formal analysis (supporting), Project administration (supporting), Resources (equal), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yulin Min
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 P.R. China
Search for more papers by this authorDa Zhang
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P. R. China
Contribution: Data curation (lead), Formal analysis (equal), Writing - original draft (lead)
Search for more papers by this authorRong Gu
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorYunxu Yang
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Data curation (supporting), Formal analysis (supporting), Investigation (equal)
Search for more papers by this authorJiaqi Ge
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Data curation (supporting), Formal analysis (supporting), Investigation (supporting), Software (equal)
Search for more papers by this authorCorresponding Author
Dr. Jinting Xu
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Data curation (supporting), Formal analysis (supporting), Project administration (equal), Software (equal), Supervision (supporting), Writing - review & editing (equal)
Search for more papers by this authorProf. Qunjie Xu
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Formal analysis (equal), Investigation (supporting)
Search for more papers by this authorDr. Penghui Shi
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Contribution: Formal analysis (equal), Project administration (equal), Supervision (supporting), Visualization (equal)
Search for more papers by this authorCorresponding Author
Prof. Mingxian Liu
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P. R. China
Contribution: Formal analysis (supporting), Project administration (supporting), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Zaiping Guo
School of Chemical Engineering and Advanced Materials, the, University of Adelaide, Adelaide, SA 5005 Australia
Contribution: Conceptualization (equal), Formal analysis (supporting), Project administration (supporting), Resources (equal), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yulin Min
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai, 200090 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 P.R. China
Search for more papers by this authorGraphical Abstract
During Li+ desolvation, the electrochemical binding ability of TSOH regulates Li+ plating morphology along the (110) crystal surface toward dendrite-free Li anode. The electron-rich structure brings lower reduction potential energy and inhibits decomposition of Li salts. Even at −60 °C, a ‘smooth and dense’ SEI is formed, significantly reducing interface transmission resistance of Li+ ions.
Abstract
Dendrites growth and unstable interfacial Li+ transport hinder the practical application of lithium metal batteries (LMBs). Herein, we report an active layer of 2,4,6–trihydroxy benzene sulfonyl fluorine on copper substrate that induces oriented Li+ deposition and generates highly crystalline solid-electrolyte interphase (SEI) to achieve high-performance LMBs. The lithiophilic −SO2− groups of highly crystalline SEI accept the rapidly transported Li+ ions and form a dense inner layer of LiF and Li3N, which regulate Li+ plating morphology along the (110) crystal surface toward dendrite-free Li anode. Thus, Li||Cu cells with lithiophilic SEI achieve an average deposition efficiency of 99.8 % after 700 cycles, and Li||Li cells operate well for 1100 h. Besides, Li||LiNi0.8Co0.1Mn0.1O2 cells with modified SEI exhibit a capacity retention that is 14 times than that of conventional SEI. Even at −60 °C, Li||Cu cells reach stable deposition efficiency of 83.2 % after 100 cycles.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202315122-sup-0001-misc_information.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561;
- 1bK. Turcheniuk, D. Bondarev, V. Singhal, G. Yushin, Nature 2018, 559, 467;
- 1cF. Duffner, N. Kronemeyer, J. Tuebke, J. Leker, M. Winter, R. Schmuch, Nat. Energy 2021, 6, 123;
- 1dY. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S. Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y. W. Mai, J. B. Goodenough, J. Li, Nature 2020, 578, 251;
- 1eC. Yan, H. R. Li, X. Chen, X. Q. Zhang, X. B. Cheng, R. Xu, J. Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2019, 141, 9422;
- 1fH. Jin, S. Xin, C. Chuang, W. Li, H. Wang, J. Zhu, H. Xie, T. Zhang, Y. Wan, Z. Qi, W. Yan, Y. R. Lu, T. S. Chan, X. Wu, J. B. Goodenough, H. Ji, X. Duan, Science 2020, 370, 192.
- 2
- 2aS. Zhang, K. Xu, T. Jow, J. Power Sources 2003, 115, 137;
- 2bM. C. Smart, B. V. Ratnakumar, R. C. Ewell, S. Surampudi, F. J. Puglia, R. Gitzendanner, Electrochim. Acta 2018, 268, 27;
- 2cE. J. Plichta, M. Hendrickson, R. Thompson, G. Au, W. K. Behl, M. C. Smart, B. V. Ratnakumar, S. Surampudi, J. Power Sources 2001, 94, 160;
- 2dQ. Li, S. Jiao, L. Luo, M. S. Ding, J. Zheng, S. S. Cartmell, C. M. Wang, K. Xu, J. G. Zhang, W. Xu, ACS Appl. Mater. Interfaces 2017, 9, 18826;
- 2eC. Y. Wang, G. Zhang, S. Ge, T. Xu, Y. Ji, X. G. Yang, Y. Leng, Nature 2016, 529, 515;
- 2fB. Scrosati, J. Garche, J. Power Sources 2010, 195, 2419.
- 3
- 3aG. A. Collins, H. Geaney, K. M. Ryan, J. Mater. Chem. A 2021, 9, 14172;
- 3bX. Liu, Y. Wang, Y. Yang, W. Lv, G. Lian, D. Golberg, X. Wang, X. Zhao, Y. Ding, Nano Energy 2020, 70, 104550;
- 3cS. Xu, Z. Sun, C. Sun, F. Li, K. Chen, Z. Zhang, G. Hou, H. M. Cheng, F. Li, Adv. Funct. Mater. 2020, 30, 2007172;
- 3dD. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194;
- 3eS. O. Tung, S. Ho, M. Yang, R. Zhang, N. A. Kotov, Nat. Commun. 2015, 6, 6152;
- 3fK. Liu, A. Pei, H. R. Lee, B. Kong, N. Liu, D. Lin, Y. Liu, C. Liu, P. C. Hsu, Z. Bao, Y. Cui, J. Am. Chem. Soc. 2017, 139, 4815.
- 4
- 4aM. C. Smart, B. L. Lucht, S. Dalavi, F. C. Krause, B. V. Ratnakumar, J. Electrochem. Soc. 2012, 159, A739;
- 4bB. Liao, H. Li, M. Xu, L. Xing, Y. Liao, X. Ren, W. Fan, L. Yu, K. Xu, W. Li, Adv. Energy Mater. 2018, 8, 1800802;
- 4cJ. G. Zhang, W. Xu, J. Xiao, X. Cao, J. Liu, Chem. Rev. 2020, 120, 13312;
- 4dS. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, 1706102.
- 5Z. Ju, J. Nai, Y. Wang, T. Liu, J. Zheng, H. Yuan, O. Sheng, C. Jin, W. Zhang, Z. Jin, H. Tian, Y. Liu, X. Tao, Nat. Commun. 2020, 11, 488.
- 6D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, S. Zhang, G. Jiang, L. Chen, A. Yu, X. Wang, Nat. Commun. 2021, 12, 186.
- 7
- 7aC. Yan, X. B. Cheng, Y. Tian, X. Chen, X. Q. Zhang, W. J. Li, J. Q. Huang, Q. Zhang, Adv. Mater. 2018, 30, 1707629;
- 7bX. Q. Zhang, X. Chen, L. P. Hou, B. Q. Li, X. B. Cheng, J. Q. Huang, Q. Zhang, ACS Energy Lett. 2019, 4, 411.
- 8
- 8aG. J. Brighty, R. C. Botham, S. Li, L. Nelson, D. E. Mortenson, G. Li, C. Morisseau, H. Wang, B. D. Hammock, K. B. Sharpless, J. W. Kelly, Nat. Chem. 2020, 12, 906;
- 8bC. Liu, C. Yang, S. Hwang, S. L. Ferraro, J. P. Flynn, J. Niu, Angew. Chem. Int. Ed. 2020, 59, 18435;
- 8cJ. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2014, 53, 9430;
- 8dJ. Dong, K. B. Sharpless, L. Kwisnek, J. S. Oakdale, V. V. Fokin, Angew. Chem. Int. Ed. 2014, 53, 9466;
- 8eC. Yang, J. P. Flynn, J. Niu, Angew. Chem. Int. Ed. 2018, 57, 16194.
- 9
- 9aZ. Peng, S. A. Freunberger, Y. Chen, P. G. Bruce, Science 2012, 337, 563;
- 9bY. Chen, S. A. Freunberger, Z. Peng, O. Fontaine, P. G. Bruce, Nat. Chem. 2013, 5, 489.
- 10Q. Xiong, G. Huang, Y. Yu, C. L. Li, J. C. Li, J. M. Yan, X. B. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202116635.
- 11
- 11aJ. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396;
- 11bH. Yu, Y. Cao, L. Chen, Y. Hu, X. Duan, S. Dai, C. Li, H. Jiang, Nat. Commun. 2021, 12, 4564.
- 12S. Zhang, R. Li, N. Hu, T. Deng, S. Weng, Z. Wu, D. Lu, H. Zhang, J. Zhang, X. Wang, L. Chen, L. Fan, X. Fan, Nat. Commun. 2022, 13, 5431.
- 13Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun, S. Zheng, X. Ren, Z. Tao, D. Zhang, J. Chen, ACS Energy Lett. 2021, 6, 2174.
- 14W. Guo, W. Zhang, Y. Si, D. Wang, Y. Fu, A. Manthiram, Nat. Commun. 2021, 12, 3031.
- 15
- 15aH. Kwon, J. H. Lee, Y. Roh, J. Baek, D. J. Shin, J. K. Yoon, H. J. Ha, J. Y. Kim, H. T. Kim, Nat. Commun. 2021, 12, 5537;
- 15bD. Zhang, D. Zhu, W. Guo, C. Deng, Q. Xu, H. Li, Y. Min, Adv. Funct. Mater. 2022, 32, 2112764;
- 15cY. X. Lin, Z. Liu, K. Leung, L. Q. Chen, P. Lu, Y. Qi, J. Power Sources 2016, 309, 221.
- 16
- 16aY. Zou, F. Cheng, Y. Lu, Y. Xu, C. Fang, J. Han, Small 2023, 19, 2203394;
- 16bM. Mao, X. Ji, Q. Wang, Z. Lin, M. Li, T. Liu, C. Wang, Y. S. Hu, H. Li, X. Huang, L. Chen, L. Suo, Nat. Commun. 2023, 14, 1082;
- 16cR. Yu, Z. Li, X. Zhang, X. Guo, Chem. Commun. 2022, 58, 8994;
- 16dH. Dai, X. Gu, J. Dong, C. Wang, C. Lai, S. Sun, Nat. Commun. 2020, 11, 643.
- 17
- 17aY. N. Yang, C. H. Cui, Z. Q. Hou, Y. Q. Li, T. Zhang, Energy Storage Mater. 2022, 52, 1;
- 17bJ. Li, F. Huo, Y. Yang, T. Chen, Y. Cui, Y. Cai, H. Zhang, Chem. Eng. J. 2022, 433, 133562;
- 17cY. Ye, Y. Zhao, T. Zhao, S. Xu, Z. Xu, J. Qian, L. Wang, Y. Xing, L. Wei, Y. Li, J. Wang, L. Li, F. Wu, R. Chen, Adv. Mater. 2021, 33, 2105029;
- 17dH. Sun, G. Zhu, Y. Zhu, M. C. Lin, H. Chen, Y. Y. Li, W. H. Hung, B. Zhou, X. Wang, Y. Bai, M. Gu, C. L. Huang, H. C. Tai, X. Xu, M. Angell, J. J. Shyue, H. Dai, Adv. Mater. 2020, 32, 2001741;
- 17eL. Qiao, U. Oteo, Y. Zhang, S. R. Peña, M. Martínez-Ibañez, A. Santiago, R. Cid, L. Meabe, H. Manzano, J. Carrasco, H. Zhang, M. Armand, Energy Storage Mater. 2020, 32, 225.
- 18
- 18aY. Gao, T. Rojas, K. Wang, S. Liu, D. Wang, T. Chen, H. Wang, A. T. Ngo, D. Wang, Nat. Energy 2020, 5, 534;
- 18bL. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 2015, 350, 938.
- 19Z. Song, L. Miao, H. Duan, L. Ruhlmann, Y. Lv, D. Zhu, L. Li, L. Gan, M. Liu, Angew. Chem. Int. Ed. 2022, 61, e202208821.
- 20Y. Shang, S. Chen, N. Chen, Y. Li, J. Lai, Y. Ma, J. Chen, F. Wu, R. Chen, Energy Environ. Sci. 2022, 15, 2653.
- 21B. D. Adams, J. Zheng, X. Ren, W. Xu, J. G. Zhang, Adv. Energy Mater. 2018, 8, 1702097.