Dual-Salt Electrolyte Additive Enables High Moisture Tolerance and Favorable Electric Double Layer for Lithium Metal Battery
Zuxin Wen
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Conceptualization (lead), Formal analysis (equal), Investigation (equal), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorWenqiang Fang
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal)
Search for more papers by this authorFenglin Wang
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Formal analysis (supporting), Validation (supporting)
Search for more papers by this authorHong Kang
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorShuoqing Zhao
School of Materials Science & Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 P. R. China
Contribution: Resources (supporting), Validation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Shaojun Guo
School of Materials Science & Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 P. R. China
Contribution: Project administration (lead), Supervision (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Gen Chen
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - original draft (equal)
Search for more papers by this authorZuxin Wen
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Conceptualization (lead), Formal analysis (equal), Investigation (equal), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorWenqiang Fang
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal)
Search for more papers by this authorFenglin Wang
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Formal analysis (supporting), Validation (supporting)
Search for more papers by this authorHong Kang
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorShuoqing Zhao
School of Materials Science & Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 P. R. China
Contribution: Resources (supporting), Validation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Shaojun Guo
School of Materials Science & Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 P. R. China
Contribution: Project administration (lead), Supervision (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Gen Chen
School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083 P. R. China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - original draft (equal)
Search for more papers by this authorGraphical Abstract
A dual-salt additive-reinforced carbonate electrolyte (LTFAN) is proposed for stabilizing high-voltage LMBs. The in situ generated nitrogenous and fluoride-rich electrode electrolyte interphase with LTFAN vastly accelerates the interfacial reaction dynamics, and dual-salt additive notably strengthens the moisture tolerance. A thermodynamically favorable electric double layer at charged cathode interface is constructed.
Abstract
The carbonate electrolyte chemistry is a primary determinant for the development of high-voltage lithium metal batteries (LMBs). Unfortunately, their implementation is greatly plagued by sluggish electrode interfacial dynamics and insufficient electrolyte thermodynamic stability. Herein, lithium trifluoroacetate-lithium nitrate (LiTFA−LiNO3) dual-salt additive-reinforced carbonate electrolyte (LTFAN) is proposed for stabilizing high-voltage LMBs. We reveal that 1) the in situ generated inorganic-rich electrode-electrolyte interphase (EEI) enables rapid interfacial dynamics, 2) TFA− preferentially interacts with moisture over PF6− to strengthen the moisture tolerance of designed electrolyte, and 3) NO3− is found to be noticeably enriched at the cathode interface on charging, thus constructing Li+-enriched, solvent-coordinated, thermodynamically favorable electric double layer (EDL). The superior moisture tolerance of LTFAN and the thermodynamically stable EDL constructed at cathode interface play a decisive role in upgrading the compatibility of carbonate electrolyte with high-voltage cathode. The LMBs with LTFAN realize 4.3 V-NCM523/4.4 V-NCM622 superior cycling reversibility and excellent rate capability, which is the leading level of documented records for carbonate electrode.
Conflict of interests
The author declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202314876-sup-0001-misc_information.pdf4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Xiang, L. Yang, L. Yuan, K. Yuan, Y. Zhang, Y. Huang, J. Lin, F. Pan, Y. Huang, Joule 2019, 3, 2334;
- 1bW. Lee, J. Kim, S. Yun, W. Choi, H. Kim, W.-S. Yoon, Energy Environ. Sci. 2020, 13, 4406.
- 2K. Xu, Chem. Rev. 2004, 104, 4303.
- 3
- 3aT. Liu, J. Liu, L. Li, L. Yu, J. Diao, T. Zhou, S. Li, A. Dai, W. Zhao, S. Xu, Y. Ren, L. Wang, T. Wu, R. Qi, Y. Xiao, J. Zheng, W. Cha, R. Harder, I. Robinson, J. Wen, J. Lu, F. Pan, K. Amine, Nature 2022, 606, 305;
- 3bD. Aurbach, E. Markevich, G. Salitra, J. Am. Chem. Soc. 2021, 143, 21161;
- 3cL. Yang, K. Yang, J. Zheng, K. Xu, K. Amine, F. Pan, Chem. Soc. Rev. 2020, 49, 4667.
- 4B. L. D. Rinkel, J. P. Vivek, N. Garcia-Araez, C. P. Grey, Energy Environ. Sci. 2022, 15, 3416.
- 5M. Liu, J. Vatamanu, X. Chen, L. Xing, K. Xu, W. Li, ACS Energy Lett. 2021, 6, 2096.
- 6
- 6aP. Xiao, Y. Zhao, Z. Piao, B. Li, G. Zhou, H.-M. Cheng, Energy Environ. Sci. 2022, 15, 2435;
- 6bX. Fan, C. Wang, Chem. Soc. Rev. 2021, 50, 10486.
- 7
- 7aS. Tan, Z. Shadike, J. Li, X. Wang, Y. Yang, R. Lin, A. Cresce, J. Hu, A. Hunt, I. Waluyo, L. Ma, F. Monaco, P. Cloetens, J. Xiao, Y. Liu, X.-Q. Yang, K. Xu, E. Hu, Nat. Energy 2022, 7, 484;
- 7bY. Yan, S. Weng, A. Fu, H. Zhang, J. Chen, Q. Zheng, B. Zhang, S. Zhou, H. Yan, C.-W. Wang, Y. Tang, H. Luo, B.-W. Mao, J. Zheng, X. Wang, Y. Qiao, Y. Yang, S.-G. Sun, ACS Energy Lett. 2022, 7, 2677.
- 8
- 8aD. Lu, X. Lei, S. Weng, R. Li, J. Li, L. Lv, H. Zhang, Y. Huang, J. Zhang, S. Zhang, L. Fan, X. Wang, L. Chen, G. Cui, D. Su, X. Fan, Energy Environ. Sci. 2022, 15, 3331;
- 8bC. Xu, S. Renault, M. Ebadi, Z. Wang, E. Björklund, D. Guyomard, D. Brandell, K. Edström, T. Gustafsson, Chem. Mater. 2017, 29, 2254.
- 9H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang, T. Cai, F. Zhao, G. Liu, Z. Ma, W. Wahyudi, Q. Li, J. Ming, ACS Energy Lett. 2022, 7, 490.
- 10W. Song, E. S. Scholtis, P. C. Sherrell, D. K. H. Tsang, J. Ngiam, J. Lischner, S. Fearn, V. Bemmer, C. Mattevi, N. Klein, F. Xie, D. J. Riley, Energy Environ. Sci. 2020, 13, 4977.
- 11
- 11aJ. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 2021, 11, 2100046;
- 11bW. Huang, H. Wang, D. T. Boyle, Y. Li, Y. Cui, ACS Energy Lett. 2020, 5, 1128;
- 11cY. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang, X. Ren, R. Cao, W. Xu, D. R. Baer, Y. Du, O. Borodin, Y. Wang, X.-L. Wang, K. Xu, Z. Xu, C. Wang, Z. Zhu, Nat. Nanotechnol. 2020, 15, 224;
- 11dT. Liu, L. Lin, X. Bi, L. Tian, K. Yang, J. Liu, M. Li, Z. Chen, J. Lu, K. Amine, K. Xu, F. Pan, Nat. Nanotechnol. 2019, 14, 50;
- 11eR. Guo, K.-H. Kim, B. M. Gallant, J. Electrochem. Soc. 2022, 169, 100523.
- 12C. Yan, H. R. Li, X. Chen, X. Q. Zhang, X. B. Cheng, R. Xu, J. Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2019, 141, 9422.
- 13
- 13aL. Zeng, T. Wu, T. Ye, T. Mo, R. Qiao, G. Feng, Nat. Comput. Sci. 2021, 1, 725;
- 13bG. Feng, S. Li, V. Presser, P. T. Cummings, J. Phys. Chem. Lett. 2013, 4, 3367.
- 14W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia, S. Yan, X. Chen, H. Zhou, H. Dong, K. Liu, Nat. Commun. 2022, 13, 2029.
- 15N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan, L. Wang, P.-F. Wang, T. Jin, S.-C. Liou, H. Yang, J. Jiang, K. Xu, M. A. Schroeder, X. He, C. Wang, ACS Energy Lett. 2021, 6, 1839.
- 16
- 16aX. Wang, S. Li, W. Zhang, D. Wang, Z. Shen, J. Zheng, H. L. Zhuang, Y. He, Y. Lu, Nano Energy 2021, 89, 106353;
- 16bS. Liu, J. Xia, W. Zhang, H. Wan, J. Zhang, J. Xu, J. Rao, T. Deng, S. Hou, B. Nan, C. Wang, Angew. Chem. Int. Ed. 2022, 61, e202210522.
- 17
- 17aY. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen, F. Huang, R. Cao, G. Zhang, S. Jiao, Angew. Chem. Int. Ed. 2020, 59, 3505;
- 17bX. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao, S. Li, Q. Liu, J. Wu, Y. Fu, C. Han, F. Kang, B. Li, Adv. Mater. 2021, 33, 2007945.
- 18Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun, B. An, H.-M. Cheng, F. Li, Adv. Energy Mater. 2020, 10, 1903843.
- 19X. Chen, H. Li, X. Shen, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16643.
- 20
- 20aZ. Piao, P. Xiao, R. Luo, J. Ma, R. Gao, C. Li, J. Tan, K. Yu, G. Zhou, H.-M. Cheng, Adv. Mater. 2022, 34, 2108400;
- 20bS. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, S. Hou, T. Jin, H. Wan, J. Li, J. Tu, C. Wang, Angew. Chem. Int. Ed. 2021, 60, 3661.
- 21
- 21aC. Yan, Y. Yao, X. Chen, X. Cheng, X. Zhang, J. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 14055;
- 21bW. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu, Y. Lu, Adv. Mater. 2020, 32, 2001740.
- 22S. Zhang, R. Li, N. Hu, T. Deng, S. Weng, Z. Wu, D. Lu, H. Zhang, J. Zhang, X. Wang, L. Chen, L. Fan, X. Fan, Nat. Commun. 2022, 13, 5431.
- 23
- 23aN. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682;
- 23bY. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma, O. Sheng, G. Lu, X. W. Lou, Science 2022, 375, 739;
- 23cX. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Sci. Adv. 2018, 4, eaau9245.
- 24
- 24aZ. Peng, X. Cao, P. Gao, H. Jia, X. Ren, S. Roy, Z. Li, Y. Zhu, W. Xie, D. Liu, Q. Li, D. Wang, W. Xu, J.-G. Zhang, Adv. Funct. Mater. 2020, 30, 2001285;
- 24bS. Lin, H. Hua, P. Lai, J. Zhao, Adv. Energy Mater. 2021, 11, 2101775.
- 25
- 25aY. Zhao, T. Zhou, T. Ashirov, M. E. Kazzi, C. Cancellieri, L. P. H. Jeurgens, J. W. Choi, A. Coskun, Nat. Commun. 2022, 13, 2575;
- 25bY. Zhao, T. Zhou, M. Mensi, J. W. Choi, A. Coskun, Nat. Commun. 2023, 14, 299;
- 25cC.-C. Su, M. He, R. Amine, T. Rojas, L. Cheng, A. T. Ngo, K. Amine, Energy Environ. Sci. 2019, 12, 1249.
- 26
- 26aW. Fang, Z. Wen, L. Chen, Z. Qin, J. Li, Z. Zheng, Z. Weng, G. Wu, N. Zhang, X. Liu, X. Yuan, G. Chen, Nano Energy 2022, 104, 107881;
- 26bW. Xue, M. Huang, Y. Li, Y. G. Zhu, R. Gao, X. Xiao, W. Zhang, S. Li, G. Xu, Y. Yu, P. Li, J. Lopez, D. Yu, Y. Dong, W. Fan, Z. Shi, R. Xiong, C.-J. Sun, I. Hwang, W.-K. Lee, Y. Shao-Horn, J. A. Johnson, J. Li, Nat. Energy 2021, 6, 495.
- 27Y. Zou, Z. Cao, J. Zhang, W. Wahyudi, Y. Wu, G. Liu, Q. Li, H. Cheng, D. Zhang, G.-T. Park, L. Cavallo, T. D. Anthopoulos, L. Wang, Y.-K. Sun, J. Ming, Adv. Mater. 2021, 33, 2102964.
- 28
- 28aY. Li, W. Li, R. Shimizu, D. Cheng, H. Nguyen, J. Paulsen, S. Kumakura, M. Zhang, Y. S. Meng, Adv. Energy Mater. 2022, 12, 2103033;
- 28bJ. Zhang, P.-F. Wang, P. Bai, H. Wan, S. Liu, S. Hou, X. Pu, J. Xia, W. Zhang, Z. Wang, B. Nan, X. Zhang, J. Xu, C. Wang, Adv. Mater. 2022, 34, 2108353.
- 29C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J. Z. Lee, M.-H. Lee, J. Alvarado, M. A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y. S. Meng, Nature 2019, 572, 511.
- 30Y. Yan, C. Shu, R. Zheng, M. Li, Z. Ran, M. He, A. Hu, T. Zeng, H. Xu, Y. Zeng, Nano Res. 2022, 15, 3150.
- 31Y. Lu, L. Liu, A. Ning, G. Yang, Y. Liu, T. Kurtén, H. Vehkamäki, X. Zhang, L. Wang, Geophys. Res. Lett. 2020, 47, e2019GL085627.
- 32Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269.