Defects-Induced Single-Atom Anchoring on Metal–Organic Frameworks for High-Efficiency Photocatalytic Nitrogen Reduction
Guangmin Ren
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorJianyong Zhao
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorZehui Zhao
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorZizhen Li
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorLiang Wang
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorZisheng Zhang
Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N6N5 Canada
Search for more papers by this authorChunhu Li
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorCorresponding Author
Xiangchao Meng
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorGuangmin Ren
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorJianyong Zhao
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorZehui Zhao
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorZizhen Li
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorLiang Wang
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorZisheng Zhang
Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N6N5 Canada
Search for more papers by this authorChunhu Li
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorCorresponding Author
Xiangchao Meng
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorGraphical Abstract
A photochemical strategy was applied to fabricate the defects on MOFs. And the defects further induced the anchoring of Ru single atoms. The photocatalytic activity in N2 reduction to produce ammonia has been greatly improved to 53.28 μmol g−1 h−1 on Ru1/d-UiO-66 with an apparent quantum efficiency of 0.34 % at 300 nm and 0.04 % at 420 nm.
Abstract
Aiming to improve the photocatalytic activity in N2 fixation to produce ammonia, herein, we proposed a photochemical strategy to fabricate defects, and further deposition of Ru single atoms onto UiO-66 (Zr) framework. Electron-metal-support interactions (EMSI) were built between Ru single atoms and the support via a covalently bonding. EMSI were capable of accelerating charge transfer between Ru SAs and UiO-66, which was favorable for highly-efficiently photocatalytic activity. The photocatalytic production rate of ammonia improved from 4.57 μmol g−1 h−1 to 16.28 μmol g−1 h−1 with the fabrication of defects onto UiO-66, and further to 53.28 μmol g−1 h−1 with Ru-single atoms loading. From the DFT results, it was found that d-orbital electrons of Ru were donated to N2 π✶-antibonding orbital, facilitating the activation of the N≡N triple bond. A distal reaction pathway was probably occurred for the photocatalytic N2 reduction to ammonia on Ru1/d-UiO-66 (single Ru sites decorated onto the nodes of defective UiO-66), and the first step of hydrogenation of N2 was the reaction determination step. This work shed a light on improving the photocatalytic activity via feasibly anchoring single atoms on MOF, and provided more evidences to understand the reaction mechanism in photocatalytic reduction of N2.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202314408-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Chu, Y. Luo, P. Shen, X. Li, Q. Li, Y. Guo, Adv. Energy Mater. 2022, 12, 2103022;
- 1bX. Cui, C. Tang, Q. Zhang, Adv. Energy Mater. 2018, 8, 1800369.
- 2
- 2aT. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, X. Sun, Angew. Chem. Int. Ed. Engl. 2019, 58, 18449–18453;
- 2bH. Yin, Z. Chen, Y. Peng, S. Xiong, Y. Li, H. Yamashita, J. Li, Angew. Chem. Int. Ed. Engl. 2022, 61, e202114242.
- 3
- 3aY. Zhao, Y. Zhao, G. I. N. Waterhouse, L. Zheng, X. Cao, F. Teng, L. Z. Wu, C. H. Tung, D. O′Hare, T. Zhang, Adv. Mater. 2017, 29, 1703828;
- 3bJ. Di, J. Xia, M. F. Chisholm, J. Zhong, C. Chen, X. Cao, F. Dong, Z. Chi, H. Chen, Y. X. Weng, J. Xiong, S. Z. Yang, H. Li, Z. Liu, S. Dai, Adv. Mater. 2019, 31, e1807576;
- 3cP. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen, J. Low, R. Long, W. Liu, P. Ding, Y. Wu, Y. Xiong, J. Am. Chem. Soc. 2020, 142, 12430–12439.
- 4
- 4aR. Shi, Y. Zhao, G. I. N. Waterhouse, S. Zhang, T. Zhang, ACS Catal. 2019, 9, 9739–9750;
- 4bL. Wang, Y. Xia, J. Yu, Chem 2021, 7, 1983–1985;
- 4cY. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2019, 31, e1806482;
- 4dY. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G. I. N. Waterhouse, T. Zhang, Adv. Energy Mater. 2020, 10, 2002199.
- 5
- 5aQ. Han, X. Bai, J. Chen, S. Feng, W. Gao, W. Tu, X. Wang, J. Wang, B. Jia, Q. Shen, Y. Zhou, Z. Zou, Adv. Mater. 2021, 33, e2006780;
- 5bH. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 2017, 139, 10929–10936;
- 5cT. Hou, R. Guo, L. Chen, Y. Xie, J. Guo, W. Zhang, X. Zheng, W. Zhu, X. Tan, L. Wang, Nano Energy 2019, 65, 104003;
- 5dG. Zhang, Y. Li, C. He, X. Ren, P. Zhang, H. Mi, Adv. Energy Mater. 2021, 11, 2003294;
- 5eS. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Energy Mater. 2020, 10, 1901973.
- 6
- 6aX. Gao, L. An, D. Qu, W. Jiang, Y. Chai, S. Sun, X. Liu, Z. Sun, Sci. Bull. 2019, 64, 918–925;
- 6bN. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2018, 140, 9434–9443.
- 7
- 7aT. Qiu, Z. Liang, W. Guo, H. Tabassum, S. Gao, R. Zou, ACS Energy Lett. 2020, 5, 520–532;
- 7bS. Yuan, J. Zhang, L. Hu, J. Li, S. Li, Y. Gao, Q. Zhang, L. Gu, W. Yang, X. Feng, B. Wang, Angew. Chem. Int. Ed. Engl. 2021, 60, 21685–21690;
- 7cH. Liu, M. Cheng, Y. Liu, J. Wang, G. Zhang, L. Li, L. Du, G. Wang, S. Yang, X. Wang, Energy Environ. Sci. 2022, 15, 3722–3749.
- 8
- 8aG. Wang, C. T. He, R. Huang, J. Mao, D. Wang, Y. Li, J. Am. Chem. Soc. 2020, 142, 19339–19345;
- 8bC. Xu, Y. Pan, G. Wan, H. Liu, L. Wang, H. Zhou, S. H. Yu, H. L. Jiang, J. Am. Chem. Soc. 2019, 141, 19110–19117.
- 9
- 9aY. Benseghir, A. Lemarchand, M. Duguet, P. Mialane, M. Gomez-Mingot, C. Roch-Marchal, T. Pino, M. H. Ha-Thi, M. Haouas, M. Fontecave, A. Dolbecq, C. Sassoye, C. Mellot-Draznieks, J. Am. Chem. Soc. 2020, 142, 9428–9438;
- 9bK. Kratzl, T. Kratky, S. Gunther, O. Tomanec, R. Zboril, J. Michalicka, J. M. Macak, M. Cokoja, R. A. Fischer, J. Am. Chem. Soc. 2019, 141, 13962–13969.
- 10
- 10aL. Jiao, Y. Wang, H. L. Jiang, Q. Xu, Adv. Mater. 2018, 30, e1703663;
- 10bQ. Mo, L. Zhang, S. Li, H. Song, Y. Fan, C. Y. Su, J. Am. Chem. Soc. 2022, 144, 22747–22758.
- 11
- 11aY. Ma, X. Han, S. Xu, Z. Wang, W. Li, I. da Silva, S. Chansai, D. Lee, Y. Zou, M. Nikiel, P. Manuel, A. M. Sheveleva, F. Tuna, E. J. L. McInnes, Y. Cheng, S. Rudic, A. J. Ramirez-Cuesta, S. J. Haigh, C. Hardacre, M. Schroder, S. Yang, J. Am. Chem. Soc. 2021, 143, 10977–10985;
- 11bY. Zhu, J. Zheng, J. Ye, Y. Cui, K. Koh, L. Kovarik, D. M. Camaioni, J. L. Fulton, D. G. Truhlar, M. Neurock, C. J. Cramer, O. Y. Gutierrez, J. A. Lercher, Nat. Commun. 2020, 11, 5849.
- 12
- 12aB. H. Lee, S. Park, M. Kim, A. K. Sinha, S. C. Lee, E. Jung, W. J. Chang, K. S. Lee, J. H. Kim, S. P. Cho, H. Kim, K. T. Nam, T. Hyeon, Nat. Mater. 2019, 18, 620–626;
- 12bX. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427–2431.
- 13James N. Galloway, Alan R. Townsend, Jan Willem Erisman, >Mateete Bekunda, Zucong Cai, John R. Freney, Luiz A. Martinelli, Sybil P. Seitzinger, Mark A. Sutton, Science 2008, 320, 889–892.
- 14H. Tao, C. Choi, L.-X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H. Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Chem 2019, 5, 204–214.
- 15Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, Adv. Mater. 2018, 30, 1803498.
- 16
- 16aH. Huang, K. Shen, F. Chen, Y. Li, ACS Catal. 2020, 10, 6579–6586;
- 16bW. Qu, C. Chen, Z. Tang, H. Wen, L. Hu, D. Xia, S. Tian, H. Zhao, C. He, D. Shu, Coord. Chem. Rev. 2023, 474, 214855.
- 17
- 17aI. Abánades Lázaro, C. J. R. Wells, R. S. Forgan, Angew. Chem. 2020, 132, 5249–5255;
10.1002/ange.201915848 Google Scholar
- 17bG. Ye, H. Wang, W. Chen, H. Chu, J. Wei, D. Wang, J. Wang, Y. Li, Angew. Chem. Int. Ed. Engl. 2021, 60, 20318–20324.
- 18
- 18aY. Fu, Z. Kang, W. Cao, J. Yin, Y. Tu, J. Li, H. Guan, Y. Wang, Q. Wang, X. Kong, Angew. Chem. Int. Ed. Engl. 2021, 60, 7719–7727;
- 18bX. Zhang, Y. Yang, X. Lv, Y. Wang, N. Liu, D. Chen, L. Cui, J. Hazard. Mater. 2019, 366, 140–150.
- 19W. Gao, X. Li, X. Zhang, S. Su, S. Luo, R. Huang, Y. Jing, M. Luo, Nanoscale 2021, 13, 7801–7809.
- 20X. He, Y. Liao, J. Tan, G. Li, F. Yin, Electrochim. Acta 2022, 409, 139988.
- 21M. Zhang, L. Zou, C. Yang, Y. Chen, Z. Shen, C. Bo, Nanoscale 2019, 11, 2855–2862.
- 22F. Chen, Y. Li, M. Zhou, X. Gong, Y. Gao, G. Cheng, S. Ren, D. Han, Appl. Catal. B 2023, 328, 122517.
- 23J. Wang, W. Fang, Y. Hu, Y. Zhang, J. Dang, Y. Wu, B. Chen, H. Zhao, Z. Li, Appl. Catal. B 2021, 298, 120490.
- 24G. Ren, M. Shi, Z. Li, Z. Zhang, X. Meng, Appl. Catal. B 2023, 327, 122462.
- 25Y. Bo, H. Wang, Y. Lin, T. Yang, R. Ye, Y. Li, C. Hu, P. Du, Y. Hu, Z. Liu, R. Long, C. Gao, B. Ye, L. Song, X. Wu, Y. Xiong, Angew. Chem. Int. Ed. Engl. 2021, 60, 16085–16092.
- 26W. Ke, C. C. Stoumpos, J. L. Logsdon, M. R. Wasielewski, Y. Yan, G. Fang, M. G. Kanatzidis, J. Am. Chem. Soc. 2016, 138, 14998–15003.
- 27X. Yue, S. Yi, R. Wang, Z. Zhang, S. Qiu, Nano Energy 2018, 47, 463–473.
- 28
- 28aP. Wang, Y. Ji, Q. Shao, Y. Li, X. Huang, Sci. Bull. 2020, 65, 350–358;
- 28bACS Catal. 2020, 10, 2431–2442.