Base-Modulated 1,3-Regio- and Stereoselective Carboboration of Cyclohexenes
Weiyu Kong
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorYang Bao
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorLiguo Lu
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorZhipeng Han
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorYifan Zhong
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorDr. Ran Zhang
Core Facility of Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yuqiang Li
Shanghai AI Laboratory, Shanghai, 200030 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guoyin Yin
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorWeiyu Kong
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorYang Bao
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorLiguo Lu
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorZhipeng Han
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorYifan Zhong
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorDr. Ran Zhang
Core Facility of Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yuqiang Li
Shanghai AI Laboratory, Shanghai, 200030 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guoyin Yin
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorGraphical Abstract
Introducing two remote functional groups into rings via chain-walking represents a new strategy to efficiently access multi-substituted saturated cyclic compounds. We report an unprecedented 1,3-cis-carboboration of cyclohexenes by nickel catalysis. The application of LiOMe as base plays a crucial role in the success of this reaction.
Abstract
While chain-walking stimulates wide interest in both polymerization and organic synthesis, site- and stereoselective control of chain-walking on rings is still a challenging task in the realm of organometallic catalysis. Inspired by a controllable chain-walking on cyclohexane rings in olefin polymerization, we have developed a set of chain-walking carboborations of cyclohexenes based on nickel catalysis. Different from the 1,4-trans-selectivity disclosed in polymer science, a high level of 1,3-regio- and cis-stereoselectivity is obtained in our reactions. Mechanistically, we discovery that the base affects the reduction ability of B2pin2 and different bases lead to different catalytic cycles and different regioselective products (1,2- Vs 1,3-addition). This study provides a concise and modular method for the synthesis of 1,3-disubstituted cyclohexylboron compounds. The incorporation of a readily modifiable boronate group greatly enhances the value of this method, the synthetic potential of which was highlighted by the synthesis of a series of high-valued commercial chemicals and pharmaceutically interesting molecules.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202308041-sup-0001-2234906.cif711.5 KB | Supporting Information |
anie202308041-sup-0001-2255684.cif672.9 KB | Supporting Information |
anie202308041-sup-0001-2255698.cif820.9 KB | Supporting Information |
anie202308041-sup-0001-2255704.cif120.4 KB | Supporting Information |
anie202308041-sup-0001-2255729.cif481.9 KB | Supporting Information |
anie202308041-sup-0001-2255759.cif709 KB | Supporting Information |
anie202308041-sup-0001-2255769.cif2.4 MB | Supporting Information |
anie202308041-sup-0001-2255771.cif457.6 KB | Supporting Information |
anie202308041-sup-0001-misc_information.pdf11.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–6756.
- 2
- 2aM. A. M. Subbaiah, N. A. Meanwell, J. Med. Chem. 2021, 64, 14046–14128;
- 2bM. Ishikawa, Y. Hashimoto, J. Med. Chem. 2011, 54, 1539–1554;
- 2cY. Zheng, W. Huang, R. K. Dhungana, A. Granados, S. Keess, M. Makvandi, G. A. Molander, J. Am. Chem. Soc. 2022, 144, 23685–23690;
- 2dW. Dong, E. Yen-Pon, L. Li, A. Bhattacharjee, A. Jolit, G. A. Molander, Nat. Chem. 2022, 14, 1068–1077;
- 2eN. Frank, J. Nugent, B. R. Shire, H. D. Pickford, P. Rabe, A. J. Sterling, T. Zarganes-Tzitzikas, T. Grimes, A. L. Thompson, R. C. Smith, C. J. Schofield, P. E. Brennan, F. Duarte, E. A. Anderson, Nature 2022, 611, 721–726;
- 2fY. Yang, J. Tsien, J. M. E. Hughes, B. K. Peters, R. R. Merchant, T. Qin, Nat. Chem. 2021, 13, 950–955;
- 2gY. Yang, J. Tsien, A. Ben David, J. M. E. Hughes, R. R. Merchant, T. Qin, J. Am. Chem. Soc. 2021, 143, 471–480;
- 2hX. Zhang, R. T. Smith, C. Le, S. J. McCarver, B. T. Shireman, N. I. Carruthers, D. W. C. MacMillan, Nature 2020, 580, 220–226;
- 2iR. C. Epplin, S. Paul, L. Herter, C. Salome, E. N. Hancock, J. F. Larrow, E. W. Baum, D. R. Dunstan, C. Ginsburg-Moraff, T. C. Fessard, M. K. Brown, Nat. Commun. 2022, 13, 6056.
- 3
- 3aC. S. Dampalla, Y. Kim, N. Bickmeier, A. D. Rathnayake, H. N. Nguyen, J. Zheng, M. M. Kashipathy, M. A. Baird, K. P. Battaile, S. Lovell, S. Perlman, K. O. Chang, W. C. Groutas, J. Med. Chem. 2021, 64, 10047–10058;
- 3bJ. E. Pero, J. J. McAtee, D. J. Behm, J. Briand, G. Graczyk-Millbrandt, K. Erhard, A. D. Roberts, R. A. Rivero, D. A. Holt, B. G. Lawhorn, ACS Med. Chem. Lett. 2021, 12, 1498–1502;
- 3cJ. B. Thomas, A. M. Giddings, R. W. Wiethe, S. Olepu, K. R. Warner, P. Sarret, L. Gendron, J. M. Longpre, Y. Zhang, S. P. Runyon, B. P. Gilmour, J. Med. Chem. 2014, 57, 5318–5332;
- 3dX. Zhang, C. Hou, H. Hufnagel, M. Singer, E. Opas, S. McKenney, D. Johnson, Z. Sui, ACS Med. Chem. Lett. 2012, 3, 1039–1044;
- 3eA. Aguilar, J. Lu, L. Liu, D. Du, D. Bernard, D. McEachern, S. Przybranowski, X. Li, R. Luo, B. Wen, D. Sun, H. Wang, J. Wen, G. Wang, Y. Zhai, M. Guo, D. Yang, S. Wang, J. Med. Chem. 2017, 60, 2819–2839;
- 3fP. R. Jefferies, P. J. Gengo, M. J. Watson, J. E. Casida, J. Med. Chem. 1996, 39, 2339–2346.
- 4
- 4aM. A. Nagy, R. Hilgraf, D. S. Mortensen, J. Elsner, S. Norris, J. Tikhe, W. Yoon, D. Paisner, M. Delgado, P. Erdman, J. Haelewyn, G. Khambatta, L. Xu, W. J. Romanow, K. Condroski, S. Bahmanyar, M. McCarrick, B. Benish, K. Blease, L. LeBrun, M. F. Moghaddam, J. Apuy, S. S. Canan, B. L. Bennett, Y. Satoh, J. Med. Chem. 2021, 64, 18193–18208;
- 4bN. J. Press, R. J. Taylor, J. D. Fullerton, P. Tranter, C. McCarthy, T. H. Keller, N. Arnold, D. Beer, L. Brown, R. Cheung, J. Christie, A. Denholm, S. Haberthuer, J. D. Hatto, M. Keenan, M. K. Mercer, H. Oakman, H. Sahri, A. R. Tuffnell, M. Tweed, J. W. Tyler, T. Wagner, J. R. Fozard, A. Trifilieff, J. Med. Chem. 2012, 55, 7472–7479;
- 4cH. Huang, S. K. Meegalla, J. C. Lanter, M. P. Winters, S. Zhao, J. Littrell, J. Qi, B. Rady, P. S. Lee, J. Liu, T. Martin, W. W. Lam, F. Xu, H. K. Lim, T. Wilde, J. Silva, M. Otieno, A. Pocai, M. R. Player, ACS Med. Chem. Lett. 2019, 10, 16–21.
- 5M. Macchia, L. Cervetto, G. C. Demontis, B. Longoni, F. Minutolo, E. Orlandini, G. Ortore, C. Papi, A. Sbrana, B. Macchia, J. Med. Chem. 2003, 46, 161–168.
- 6P. T. W. Cheng, R. F. Kaltenbach (3rd), H. Zhang, J. Shi, S. Tao, J. Li, L. J. Kennedy, S. J. Walker, Y. Shi, Y. Wang, S. Dhanusu, R. Reddigunta, S. Kumaravel, S. Jusuf, D. Smith, S. Krishnananthan, J. Li, T. Wang, R. Heiry, C. S. Sum, S. S. Kalinowski, C. P. Hung, C. H. Chu, A. V. Azzara, M. Ziegler, L. Burns, B. A. Zinker, S. Boehm, J. Taylor, J. Sapuppo, K. Mosure, G. Everlof, V. Guarino, L. Zhang, Y. Yang, Q. Ruan, C. Xu, A. Apedo, S. C. Traeger, M. E. Cvijic, K. A. Lentz, G. Tirucherai, L. Sivaraman, J. Robl, B. A. Ellsworth, G. Rosen, D. A. Gordon, M. G. Soars, M. Gill, B. J. Murphy, J. Med. Chem. 2021, 64, 15549–15581.
- 7
- 7aG. Masson, C. Lalli, M. Benohoud, G. Dagousset, Chem. Soc. Rev. 2013, 42, 902–923;
- 7bS. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359–5406.
- 8D. S. Wang, Q. A. Chen, S. M. Lu, Y. G. Zhou, Chem. Rev. 2012, 112, 2557–2590.
- 9
- 9aZ. Zhang, B. Gorski, D. Leonori, J. Am. Chem. Soc. 2022, 144, 1986–1992;
- 9bJ. Li, Q. Ren, X. Cheng, K. Karaghiosoff, P. Knochel, J. Am. Chem. Soc. 2019, 141, 18127–18135;
- 9cF. Juliá, T. Constantin, D. Leonori, Chem. Rev. 2022, 122, 2292–2352;
- 9dH. Huo, B. J. Gorsline, G. C. Fu, Science 2020, 367, 559–564;
- 9eT. J. Fazekas, J. W. Alty, E. K. Neidhart, A. S. Miller, F. A. Leibfarth, E. J. Alexanian, Science 2022, 375, 545–550;
- 9fX. Mu, Y. Shibata, Y. Makida, G. C. Fu, Angew. Chem. Int. Ed. 2017, 56, 5821–5824.
- 10
- 10aS. B. Beil, T. Q. Chen, N. E. Intermaggio, D. W. C. MacMillan, Acc. Chem. Res. 2022, 55, 3481–3494;
- 10bJ. A. Milligan, J. P. Phelan, S. O. Badir, G. A. Molander, Angew. Chem. Int. Ed. 2019, 58, 6152-6163.
- 11
- 11aM. P. Wiesenfeldt, Z. Nairoukh, W. Li, F. Glorius, Science 2017, 357, 908–912;
- 11bL. Ling, Y. He, X. Zhang, M. Luo, X. Zeng, Angew. Chem. Int. Ed. 2019, 58, 6554–6558;
- 11cM. Wollenburg, D. Moock, F. Glorius, Angew. Chem. Int. Ed. 2019, 58, 6549–6553.
- 12
- 12aS. Zhu, X. Zhao, H. Li, L. Chu, Chem. Soc. Rev. 2021, 50, 10836–10856;
- 12bK. M. Logan, S. R. Sardini, S. D. White, M. K. Brown, J. Am. Chem. Soc. 2018, 140, 159–162;
- 12cM. R. Monaco, S. Prévost, B. List, Angew. Chem. Int. Ed. 2014, 53, 8142–8145;
- 12dY. Zhang, H. Q. Geng, X. F. Wu, Angew. Chem. Int. Ed. 2021, 60, 24292–24298;
- 12eH. Wang, J. Wu, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2022, 61, e202202061;
- 12fS. Joung, A. M. Bergmann, M. K. Brown, Chem. Sci. 2019, 10, 10944–10947;
- 12gI. Sakurada, S. Yamasaki, R. Göttlich, T. Iida, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2000, 122, 1245–1246;
- 12hYeung, X. Gao, E. J. Corey, J. Am. Chem. Soc. 2006, 128, 9644–9645.
- 13
- 13aH. Pang, D. Wu, H. Cong, G. Yin, ACS Catal. 2019, 9, 8555–8560;
- 13bD. Zhu, Z. Jiao, Y. R. Chi, T. P. Goncalves, K. W. Huang, J. S. Zhou, Angew. Chem. Int. Ed. 2020, 59, 5341–5345;
- 13cL. J. Chesley, D. P. Poudel, R. R. Sapkota, R. K. Dhungana, M. G. Lakomy, R. Giri, ACS Omega 2023, 8, 19912–19916.
- 14
- 14aG. Kang, D. A. Strassfeld, T. Sheng, C.-Y. Chen, J.-Q. Yu, Nature 2023, 618, 519–525;
- 14bG. Xia, J. Weng, L. Liu, P. Verma, Z. Li, J. Q. Yu, Nat. Chem. 2019, 11, 571–577.
- 15
- 15aV. M. Möhring, G. Fink, Angew. Chem. Int. Ed. 1985, 24, 1001–1003;
- 15bL. Guo, S. Dai, X. Sui, C. Chen, ACS Catal. 2016, 6, 428–441;
- 15cC. Chen, Nat. Chem. Rev. 2018, 2, 6–14.
- 16
- 16aY. Li, D. Wu, H.-G. Cheng, G. Yin, Angew. Chem. Int. Ed. 2020, 59, 7990–8003;
- 16bD. Kalyani, M. S. Sanford, J. Am. Chem. Soc. 2008, 130, 2150–2151;
- 16cY. He, Z. Yang, R. T. Thornbury, F. D. Toste, J. Am. Chem. Soc. 2015, 137, 12207–12210;
- 16dH. Sommer, F. Juliá-Hernández, R. Martin, I. Marek, ACS Cent. Sci. 2018, 4, 153–165;
- 16eP. Basnet, R. K. Dhungana, S. Thapa, B. Shrestha, S. Kc, J. M. Sears, R. Giri, J. Am. Chem. Soc. 2018, 140, 7782–7786;
- 16fR. K. Dhungana, S. Kc, P. Basnet, V. Aryal, L. J. Chesley, R. Giri, ACS Catal. 2019, 9, 10887–10893;
- 16gR. K. Dhungana, R. R. Sapkota, D. Niroula, R. Giri, Chem. Sci. 2020, 11, 9757–9774;
- 16hD. Janssen-Müller, B. Sahoo, S.-Z. Sun, R. Martin, Isr. J. Chem. 2020, 60, 195–206;
- 16iL. M. Wickham, R. K. Dhungana, R. Giri, ACS Omega 2023, 8, 1060–1066.
- 17D. Takeuchi, J. Am. Chem. Soc. 2011, 133, 11106–11109.
- 18
- 18aY. Li, Y. Li, H. Shi, H. Wei, H. Li, I. Funes-Ardoiz, G. Yin, Science 2022, 376, 749–753;
- 18bW. Wang, C. Ding, G. Yin, Nat. Catal. 2020, 3, 951–958;
- 18cC. Sun, Y. Li, G. Yin, Angew. Chem. Int. Ed. 2022, 61, e202209076;
- 18dC. Ding, Y. Ren, C. Sun, J. Long, G. Yin, J. Am. Chem. Soc. 2021, 143, 20027–20034.
- 19R. T. Thornbury, V. Saini, T. d A Fernandes, C. B. Santiago, E. P. A. Talbot, M. S. Sigman, J. M. McKenna, F. D. Toste, Chem. Sci. 2017, 8, 2890–2897.
- 20
- 20aY. A. Zhang, X. Gu, A. E. Wendlandt, J. Am. Chem. Soc. 2022, 144, 599–605;
- 20bN. Wagner-Carlberg, T. Rovis, J. Am. Chem. Soc. 2022, 144, 22426–22432;
- 20cZ. Nairoukh, M. Wollenburg, C. Schlepphorst, K. Bergander, F. Glorius, Nat. Chem. 2019, 11, 264–270.
- 21M. V. Joannou, A. A. Sarjeant, S. R. Wisniewski, Organometallics 2021, 40, 2691–2700.
- 22S. R. Sardini, A. L. Lambright, G. L. Trammel, H. M. Omer, P. Liu, M. K. Brown, J. Am. Chem. Soc. 2019, 141, 9391–9400.
- 23
- 23aC.-Y. Lin, P. P. Power, Chem. Soc. Rev. 2017, 46, 5347–5399;
- 23bJ. T. Ciszewski, D. Y. Mikhaylov, K. V. Holin, M. K. Kadirov, Y. H. Budnikova, O. Sinyashin, D. A. Vicic, Inorg. Chem. 2011, 50, 8630–8635.
- 24S. Kim, M. J. Goldfogel, M. M. Gilbert, D. J. Weix, J. Am. Chem. Soc. 2020, 142, 9902–9907.
- 25
- 25aB. Hong, T. Luo, X. Lei, ACS Cent. Sci. 2020, 6, 622–635;
- 25bJ. Börgel, T. Ritter, Chem 2020, 6, 1877–1887.
- 26Deposition numbers 2255698 (for 4 m), 2234906 (for 4 ab), 2255729 (for 4 an’), 2255704 (for 4 ao), 2255771 (for 4 ap’), 2255769 (for 4 aq’), 2255759 (for 4aq’’) and 2255684 (for 4 ar’) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 27Based on the current list price (cis- and trans- mixture) from Sigma–Aldrich, cyclohexene (CAS: 110-83-8), 3-Methylcyclohexanol (CAS: 591-23-1), (3-methylcyclohexyl) methanol (CAS: 53018-27-2), 3-methylcyclohexane-1-carbaldehyde (CAS: 13076-16-9); Based on the current list price (cis- and trans- mixture) from Enamine, 4,4,5,5-tetramethyl-2-(3-methylcyclo hexyl)-1,3,2-dioxaborolane (CAS: 264144-85-6), 4,4,5,5-tetramethyl-2-(3-methylcyclohexyl)-1,3,2-dioxa-borolane (CAS: 1174409-81-4).
- 28A. J. Smaligo, M. Swain, J. C. Quintana, M. F. Tan, D. A. Kim, O. Kwon, Science 2019, 364, 681–685.
- 29G. Bononi, M. Di Stefano, G. Poli, G. Ortore, P. Meier, F. Masetto, I. Caligiuri, F. Rizzolio, M. Macchia, A. Chicca, A. Avan, E. Giovannetti, C. Vagaggini, A. Brai, E. Dreassi, M. Valoti, F. Minutolo, C. Granchi, J. Gertsch, T. Tuccinardi, J. Med. Chem. 2022, 65, 7118–7140.
- 30M. A. Elhemely, A. A. Belgath, S. El-Sayed, K. K. Burusco, M. Kadirvel, A. Tirella, K. Finegan, R. A. Bryce, I. J. Stratford, S. Freeman, J. Med. Chem. 2022, 65, 4783–4797.
- 31M. Ishikawa, Y. Hiraiwa, D. Kubota, M. Tsushima, T. Watanabe, S. Murakami, S. Ouchi, K. Ajito, Bioorg. Med. Chem. 2006, 14, 2131–2150.
- 32H. Shinkai, M. Nishikawa, Y. Sato, K. Toi, I. Kumashiro, Y. Seto, M. Fukuma, K. Dan, S. Toyoshima, J. Med. Chem. 1989, 32, 1436–1441.