Self-Doped n-Type Quinoidal Compounds with Good Air Stability and High Electrical Conductivity for Organic Electronics
Cheng Wang
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 P. R. China
Search for more papers by this authorYi Yang
State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorLinlin Lin
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 P. R. China
Search for more papers by this authorProf. Bowei Xu
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jianhui Hou
State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yunfeng Deng
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorProf. Yanhou Geng
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorCheng Wang
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 P. R. China
Search for more papers by this authorYi Yang
State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorLinlin Lin
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 P. R. China
Search for more papers by this authorProf. Bowei Xu
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jianhui Hou
State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yunfeng Deng
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorProf. Yanhou Geng
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorGraphical Abstract
A closed-shell quinoidal backbone has been used to develop self-doped n-type conductive molecules (QnNs) with high electrical conductivities and good air stability. Intermolecular electron transfer from the amino groups to the quinoidal backbone was found to result in the self-doping. Applying the QnNs as the cathode interlayer (CIL) in organic solar cells led to an outstanding power conversion efficiency (PCE) of up to 18.2 %.
Abstract
Air stable n-type conductive molecules with high electrical conductivities and excellent device performance have important applications in organic electronics, but their synthesis remains challenging. Herein, we report three self-doped n-type conductive molecules, designated QnNs, with a closed-shell quinoidal backbone and alkyl amino chains of different lengths. The QnNs are self-doped by intermolecular electron transfer from the amino groups to the quinoidal backbone. This process is ascertained unambiguously by experiments and theoretical calculations. The use of a quinoidal structure effectively improves the self-doping level, and thus increases the electrical conductivity of self-doped n-type conductive molecules achieved by a closed-shell structure from<10−4 S cm−1 to>0.03 S cm−1. Furthermore, the closed-shell quinoidal structure results in good air stability of the QnNs, with half-lives>73 days; and Q4N shows an electrical conductivity of 0.019 S cm−1 even after exposure to air for 120 days. When applying Q6N as the cathode interlayer in organic solar cells (OSCs), an outstanding power conversion efficiency of up to 18.2 % was obtained, which represents one the best results in binary OSCs.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202307856-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
anie202307856-sup-0001-Q4N.cif951.2 KB | Supporting Information |
anie202307856-sup-0001-Q6C.cif832.1 KB | Supporting Information |
anie202307856-sup-0001-Q6N.cif2.3 MB | Supporting Information |
anie202307856-sup-0001-Q8N.cif503.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Tang, Y. Liang, C. Liu, Z. Hu, Y. Deng, H. Guo, Z. Yu, A. Song, H. Zhao, D. Zhao, Y. Zhang, X. Guo, J. Pei, Y. Ma, Y. Cao, F. Huang, Nature 2022, 611, 271–277;
- 1bK. Ueda, R. Fukuzaki, T. Ito, N. Toyama, M. Muraoka, T. Terao, K. Manabe, T. Hirai, C.-J. Wu, S.-C. Chuang, S. Kawano, M. Murata, J. Am. Chem. Soc. 2022, 144, 18744–18749;
- 1cS. Shao, J. Liu, CCS Chem. 2021, 3, 2702–2716;
- 1dH. Tang, H. Cai, H. Zhao, Z. Liu, R. Tan, F. Huang, CCS Chem. 2023, https://doi.org/10.31635/ccschem.023.202202363;
10.31635/ccschem.023.202202363 Google Scholar
- 1eZ. Ke, A. Abtahi, J. Hwang, K. Chen, J. Chaudhary, I. Song, K. Perera, L. You, K. N. Baustert, K. R. Graham, J. Mei, J. Am. Chem. Soc. 2023, 145, 3706–3715;
- 1fK. Yang, X. Zhang, A. Harbuzaru, L. Wang, Y. Wang, C. Koh, H. Guo, Y. Shi, J. Chen, H. Sun, K. Feng, M. C. Ruiz Delgado, H. Y. Woo, R. P. Ortiz, X. Guo, J. Am. Chem. Soc. 2020, 142, 4329–4340;
- 1gD. Yuan, Y. Guo, Y. Zeng, Q. Fan, J. Wang, Y. Yi, X. Zhu, Angew. Chem. Int. Ed. 2019, 58, 4958–4962;
- 1hB. Russ, M. J. Robb, F. G. Brunetti, P. L. Miller, E. E. Perry, S. N. Patel, V. Ho, W. B. Chang, J. J. Urban, M. L. Chabinyc, C. J. Hawker, R. A. Segalman, Adv. Mater. 2014, 26, 3473–3477.
- 2R. C. Haddon, Nature 1975, 256, 394–396.
- 3
- 3aW. Zhao, J. Ding, Y. Zou, C. A. Di, D. Zhu, Chem. Soc. Rev. 2020, 49, 7210–7228;
- 3bB. Lüssem, C. M. Keum, D. Kasemann, B. Naab, Z. Bao, K. Leo, Chem. Rev. 2016, 116, 13714–13751;
- 3cY. Lu, J.-Y. Wang, J. Pei, Acc. Chem. Res. 2021, 54, 2871–2883;
- 3dT. Du, Y. Liu, Y. Deng, Y. Geng, Chin. J. Chem. 2023, 41, 776–782;
- 3eH. Guo, C.-Y. Yang, X. Zhang, A. Motta, K. Feng, Y. Xia, Y. Shi, Z. Wu, K. Yang, J. Chen, Q. Liao, Y. Tang, H. Sun, H. Y. Woo, S. Fabiano, A. Facchetti, X. Guo, Nature 2021, 599, 67–73.
- 4
- 4aD. M. de Leeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Eunerhand, Synth. Met. 1997, 87, 53–59;
- 4bM. L. Tietze, B. D. Rose, M. Schwarze, A. Fischer, S. Runge, J. Blochwitz-Nimoth, B. Lüssem, K. Leo, J.-L. Brédas, Adv. Funct. Mater. 2016, 26, 3730–3737;
- 4cX. Zhao, D. Madan, Y. Cheng, J. Zhou, H. Li, S. M. Thon, A. E. Bragg, M. E. DeCoster, P. E. Hopkins, H. E. Katz, Adv. Mater. 2017, 29, 1606928;
- 4dY. Joo, V. Agarkar, S. H. Sung, B. M. Savoie, B. W. Boudouris, Science 2018, 359, 1391–1395.
- 5
- 5aL. Huang, N. Eedugurala, A. Benasco, S. Zhang, K. S. Mayer, D. J. Adams, B. Fowler, M. M. Lockart, M. Saghayezhian, H. Tahir, E. R. King, S. Morgan, M. K. Bowman, X. Gu, J. D. Azoulay, Adv. Funct. Mater. 2020, 30, 1909805;
- 5bY. Zhang, Y. Zheng, H. Zhou, M.-S. Miao, F. Wudl, T.-Q. Nguyen, Adv. Mater. 2015, 27, 7412–7419.
- 6
- 6aT. Du, Y. Liu, C. Wang, Y. Deng, Y. Geng, Macromolecules 2022, 55, 5975–5984;
- 6bS. Griggs, A. Marks, H. Bristow, I. McCulloch, J. Mater. Chem. C 2021, 9, 8099–8128;
- 6cY. Sui, Y. Deng, T. Du, Y. Shi, Y. Geng, Mater. Chem. Front. 2019, 3, 1932–1951;
- 6dY. Lu, Z.-D. Yu, R.-Z. Zhang, Z.-F. Yao, H.-Y. You, L. Jiang, H.-I. Un, B.-W. Dong, M. Xiong, J.-Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2019, 58, 11390–11394.
- 7
- 7aY. Wang, S. Qiu, S. Xie, L. Zhou, Y. Hong, J. Chang, J. Wu, Z. Zeng, J. Am. Chem. Soc. 2019, 141, 2169–2176;
- 7bZ. Li, Y. Tang, J. Guo, J. Zhang, M. Deng, W. Xiao, F. Li, Y. Yao, S. Xie, K. Yang, Z. Zeng, Chem 2023, 9, 1281–1294;
- 7cY. Jiang, Y. Zhang, Y. Deng, S. Dong, B. Li, Y. Yi, Z. Zeng, H. Chen, H. Luo, Y. Geng, CCS Chem. 2022, 4, 3497–3504;
- 7dJ.-J. Shen, Y. Han, S. Dong, H. Phan, T. S. Herng, T. Xu, J. Ding, C. Chi, Angew. Chem. Int. Ed. 2021, 60, 4464–4469;
- 7eW. Zeng, J. Wu, Chem 2021, 7, 358–386;
- 7fS. Dong, Z. Li, J. Mater. Chem. C 2022, 10, 2431–2449.
- 8
- 8aW.-J. Sun, Y.-T. Wang, Y. Zhang, B. Sun, Z.-Q. Zhang, M.-J. Xiao, X.-Y. Li, Y. Huo, J. Xin, Q. Zhu, W. Ma, H.-L. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202208383;
- 8bZ. You, Y. Song, W. Liu, W. Wang, C. Zhu, Y. Duan, Y. Liu, Angew. Chem. Int. Ed. 2023, 62, e202302538;
- 8cJ. Yao, B. Qiu, Z.-G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, Y. Li, Nat. Commun. 2020, 11, 2726;
- 8dQ. Kang, L. Ye, B. Xu, C. An, S. J. Stuard, S. Zhang, H. Yao, H. Ade, J. Hou, Joule 2019, 3, 227–239;
- 8eZ. Wang, N. Zheng, W. Zhang, H. Yan, Z. Xie, Y. Ma, F. Huang, Y. Cao, Adv. Energy Mater. 2017, 7, 1700232;
- 8fZ. Wu, C. Sun, S. Dong, X.-F. Jiang, S. Wu, H. Wu, H.-L. Yip, F. Huang, Y. Cao, J. Am. Chem. Soc. 2016, 138, 2004–2013;
- 8gB. Russ, M. J. Robb, B. C. Popere, E. E. Perry, C.-K. Mai, S. L. Fronk, S. N. Patel, T. E. Mates, G. C. Bazan, J. J. Urban, M. L. Chabinyc, C. J. Hawker, R. A. Segalman, Chem. Sci. 2016, 7, 1914–1919;
- 8hZ.-G. Zhang, B. Qi, Z. Jin, D. Chi, Z. Qi, Y. Li, J. Wang, Energy Environ. Sci. 2014, 7, 1966–1973.
- 9
- 9aC. Cai, J. Yao, L. Chen, Z. Yuan, Z.-G. Zhang, Y. Hu, X. Zhao, Y. Zhang, Y. Chen, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 19053–19057;
- 9bH. Tang, Z. Liu, Y. Tang, Z. Du, Y. Liang, Z. Hu, K. Zhang, F. Huang, Y. Cao, Giant 2021, 6, 100053;
- 9cT. H. Reilly III, A. W. Hains, H.-Y. Chen, B. A. Gregg, Adv. Energy Mater. 2012, 2, 455–460;
- 9dX. Jin, Y. Wang, X. Cheng, H. Zhou, L. Hu, Y. Zhou, L. Chen, Y. Chen, J. Mater. Chem. A 2018, 6, 423–433.
- 10C.-C. Han, C.-H. Lu, S.-P. Hong, K.-F. Yang, Macromolecules 2003, 36, 7908–7915.
- 11S. Guha, F. S. Goodson, S. Roy, L. J. Corson, C. A. Gravenmier, S. Saha, J. Am. Chem. Soc. 2011, 133, 15256–15259.
- 12
- 12aC. Zhang, X. Zhu, Adv. Funct. Mater. 2020, 30, 2000765;
- 12bT. Du, R. Gao, Y. Deng, C. Wang, Q. Zhou, Y. Geng, Angew. Chem. Int. Ed. 2020, 59, 221–225;
- 12cC. Wang, T. Du, Y. Deng, J. Yao, R. Li, X. Zhao, Y. Jiang, H. Wei, Y. Dang, R. Li, Y. Geng, Chem. Sci. 2021, 12, 9366–9371;
- 12dL. Lin, C. Wang, Y. Deng, Y. Geng, Chem. Eur. J. 2023, 29, e202203336;
- 12eK. Takimiya, K. Kawabata, J. Syn. Org. Chem. Jpn. 2018, 76, 1176–1184;
- 12fX. Geng, T. Du, C. Xu, Y. Liu, Y. Deng, Y. Geng, Adv. Funct. Mater. 2023, https://doi.org/10.1002/adfm.202300809.
10.1002/adfm.202300809 Google Scholar
- 13
- 13aS. Ueda, M. Su, S. L. Buchwald, J. Am. Chem. Soc. 2012, 134, 700–706;
- 13bJ. F. Hartwig, Nature 2008, 455, 314–322;
- 13cC. Torborg, M. Beller, Adv. Synth. Catal. 2009, 351, 3027–3043;
- 13dD. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27–50.
- 14F. Huang, L. Hou, H. Wu, X. Wang, H. Shen, W. Cao, W. Yang, Y. Cao, J. Am. Chem. Soc. 2004, 126, 9845–9853.
- 15J. Liu, N. Zheng, Z. Hu, Z. Wang, X. Yang, F. Huang, Y. Cao, Sci. China Chem. 2017, 60, 1136–1144.
- 16
- 16aK. Zhang, C. Zhong, S. Liu, C. Mu, Z. Li, H. Yan, F. Huang, Y. Cao, ACS Appl. Mater. Interfaces 2014, 6, 10429–10435;
- 16bC.-Z. Li, C.-C. Chueh, H.-L. Yip, F. Ding, X. Li, A. K.-Y. Jen, Adv. Mater. 2013, 25, 2457–2461;
- 16cC. Duan, W. Cai, B. B. Y. Hsu, C. Zhong, K. Zhang, C. Liu, Z. Hu, F. Huang, G. C. Bazan, A. J. Heeger, Y. Cao, Energy Environ. Sci. 2013, 6, 3022–3034.
- 17
- 17aX. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268–284;
- 17bX. Guo, A. Facchetti, T. J. Marks, Chem. Rev. 2014, 114, 8943–9021.
- 18D. Schmidt, D. Bialas, F. Würthner, Angew. Chem. Int. Ed. 2015, 54, 3611–3614.
- 19T. A. Shippey, J. Mol. Struct. 1980, 67, 223–233.
- 20
- 20aY. Cui, P. Zhu, X. Shi, X. Liao, Y. Chen, J. Phys. Chem. C 2021, 125, 10250–10259;
- 20bS. Nayeri, S. Jamali, V. V. Pavlovskiy, V. V. Porsev, R. A. Evarestov, K. S. Kisel, I. O. Koshevoy, J. R. Shakirova, S. P. Tunik, Eur. J. Inorg. Chem. 2019, 4350–4357.
- 21S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553–566.
- 22Y. Che, X. Yang, G. Liu, C. Yu, H. Ji, J. Zuo, J. Zhao, L. Zang, J. Am. Chem. Soc. 2010, 132, 5743–5750.
- 23
- 23aP. Wei, J. H. Oh, G. Dong, Z. Bao, J. Am. Chem. Soc. 2010, 132, 8852–8853;
- 23bR. A. Schlitz, F. G. Brunetti, A. M. Glaudell, P. L. Miller, M. A. Brady, C. J. Takacs, C. J. Hawker, M. L. Chabinyc, Adv. Mater. 2014, 26, 2825–2830.
- 24
- 24aK. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 2021, 143, 1539–1552;
- 24bY. Wang, K. Takimiya, Adv. Mater. 2020, 32, 2002060.
- 25
- 25aR. Sorrentino, E. Kozma, S. Luzzati, R. Po, Energy Environ. Sci. 2021, 14, 180–223;
- 25bZ. Chen, Y. Huang, J. Gao, L. Zhang, Z. Ma, M. Liu, T. Emrick, Y. Liu, ACS Energy Lett. 2022, 7, 4052–4060;
- 25cL. Chen, Y. Tan, X. Liu, Y. Chen, Nano Energy 2016, 27, 492–498.
- 26
- 26aH. Tang, Y. Bai, H. Zhao, X. Qin, Z. Hu, C. Zhou, F. Huang, Y. Cao, Adv. Mater. 2023, https://doi.org/10.1002/adma.202212236;
10.1002/adma.202212236 Google Scholar
- 26bH. Yao, J. Hou, Angew. Chem. Int. Ed. 2022, 61, e202209021;
- 26cL. Liu, S. Chen, Y. Qu, X. Gao, L. Han, Z. Lin, L. Yang, W. Wang, N. Zheng, Y. Liang, Y. Tan, H. Xia, F. He, Adv. Mater. 2021, 33, 2101279;
- 26dC. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605–613.
- 27
- 27aA. Colsmann, M. Reinhard, T.-H. Kwon, C. Kayser, F. Nickel, J. Czolk, U. Lemmer, N. Clark, J. Jasieniak, A. B. Holmes, D. Jones, Sol. Energy Mater. Sol. Cells 2012, 98, 118–123;
- 27bF. J. Lim, K. Ananthanarayanan, J. Luther, G. W. Ho, J. Mater. Chem. 2012, 22, 25057–25064.
- 28C. Sun, Z. Wu, Z. Hu, J. Xiao, W. Zhao, H.-W. Li, Q.-Y. Li, S.-W. Tsang, Y.-X. Xu, K. Zhang, H.-L. Yip, J. Hou, F. Huang, Y. Cao, Energy Environ. Sci. 2017, 10, 1784–1791.
- 29H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, A. J. Heeger, Adv. Mater. 2013, 25, 1646–1652.
- 30Deposition numbers 226719; 2267196; 2267197 and 2267195 (Q4N;Q6N; Q8N and Q6C. respectively) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.