Rotaxane Formation of Multicyclic Polydimethylsiloxane in a Silicone Network: A Step toward Constructing “Macro-Rotaxanes” from High-Molecular-Weight Axle and Wheel Components
Minami Ebe
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorAsuka Soga
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorKaiyu Fujiwara
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorBrian J. Ree
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorHironori Marubayashi
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 Japan
Search for more papers by this authorKatsumi Hagita
Department of Applied Physics, National Defense Academy, Yokosuka, 239-8686 Japan
Search for more papers by this authorAtsushi Imasaki
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 Japan
Search for more papers by this authorMiru Baba
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorTakuya Yamamoto
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorKenji Tajima
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorTetsuo Deguchi
Department of Physics, Faculty of Core Research, Ochanomizu University, Tokyo, 112-8610 Japan
Search for more papers by this authorHiroshi Jinnai
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 Japan
Search for more papers by this authorCorresponding Author
Takuya Isono
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorCorresponding Author
Toshifumi Satoh
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorMinami Ebe
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorAsuka Soga
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorKaiyu Fujiwara
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorBrian J. Ree
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorHironori Marubayashi
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 Japan
Search for more papers by this authorKatsumi Hagita
Department of Applied Physics, National Defense Academy, Yokosuka, 239-8686 Japan
Search for more papers by this authorAtsushi Imasaki
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 Japan
Search for more papers by this authorMiru Baba
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorTakuya Yamamoto
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorKenji Tajima
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorTetsuo Deguchi
Department of Physics, Faculty of Core Research, Ochanomizu University, Tokyo, 112-8610 Japan
Search for more papers by this authorHiroshi Jinnai
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 Japan
Search for more papers by this authorCorresponding Author
Takuya Isono
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorCorresponding Author
Toshifumi Satoh
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 Japan
Search for more papers by this authorGraphical Abstract
“Macro-rotaxanes” which consist of high-molecular-weight axle and wheel components were constructed by in situ cross-linking of linear polymers in the presence of multicyclic polymers. Extending the concept of topological trapping to multicyclic showed that multicyclic polymers with more cyclic units and larger ring sizes can be quantitatively trapped, with up to 50 wt % successfully topologically trapped as macro-rotaxanes.
Abstract
Rotaxanes consisting of a high-molecular-weight axle and wheel components (macro-rotaxanes) have high structural freedom, and are attractive for soft-material applications. However, their synthesis remains underexplored. Here, we investigated macro-rotaxane formation by the topological trapping of multicyclic polydimethylsiloxanes (mc-PDMSs) in silicone networks. mc-PDMS with different numbers of cyclic units and ring sizes was synthesized by cyclopolymerization of a α,ω-norbornenyl-functionalized PDMS. Silicone networks were prepared in the presence of 10–60 wt % mc-PDMS, and the trapping efficiency of mc-PDMS was determined. In contrast to monocyclic PDMS, mc-PDMSs with more cyclic units and larger ring sizes can be quantitatively trapped in the network as macro-rotaxanes. The damping performance of a 60 wt % mc-PDMS-blended silicone network was evaluated, revealing a higher tan δ value than the bare PDMS network. Thus, macro-rotaxanes are promising as non-leaching additives for network polymers.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202304493-sup-0001-misc_information.pdf732.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094–11125.
- 2W. Yang, Y. Li, H. Liu, L. Chi, Y. Li, Small 2012, 8, 504–516.
- 3R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, B. L. Feringa, Nature 2005, 437, 1337–1340.
- 4J. Zhao, Z. Zhang, L. Cheng, R. Bai, D. Zhao, Y. Wang, W. Yu, X. Yan, J. Am. Chem. Soc. 2022, 144, 872–882.
- 5A. Harada, Y. Takashima, H. Yamaguchi, Chem. Soc. Rev. 2009, 38, 875–882.
- 6L. Chen, X. Sheng, G. Li, F. Huang, Chem. Soc. Rev. 2022, 51, 7046–7065.
- 7Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485–487.
- 8C. Liu, N. Morimoto, L. Jiang, S. Kawahara, T. Noritomi, H. Yokoyama, K. Mayumi, K. Ito, Science 2021, 372, 1078–1081.
- 9K. Kato, M. Taniguchi, K. Ito, Macromolecules 2023, 56, 1810–1817.
- 10H. Gotoh, C. Liu, A. B. Imran, M. Hara, T. Seki, K. Mayumi, K. Ito, Y. Takeoka, Sci. Adv. 2018, 4, eaat7629.
- 11R. A. Pérez, J. v López, J. N. Hoskins, B. Zhang, S. M. Grayson, M. T. Casas, J. Puiggalí, A. J. Müller, Macromolecules 2014, 47, 3553–3566.
- 12J. V. López, R. A. Pérez-Camargo, B. Zhang, S. M. Grayson, A. J. Müller, RSC Adv. 2016, 6, 48049–48063.
- 13R. Watanabe, M. Noba, T. Uno, T. Itoh, M. Kubo, J. Polym. Sci. 2020, 58, 1982–1988.
- 14M. B. Ruiz, R. A. Pérez-Camargo, J. V. López, E. Penott-Chang, A. Múgica, O. Coulembier, A. J. Müller, Int. J. Biol. Macromol. 2021, 186, 255–267.
- 15T. Iwamoto, Y. Doi, K. Kinoshita, A. Takano, Y. Takahashi, E. Kim, T.-H. Kim, S. Takata, M. Nagao, Y. Matsushita, Macromolecules 2018, 51, 6836–6847.
- 16T. Iwamoto, Y. Doi, K. Kinoshita, Y. Ohta, A. Takano, Y. Takahashi, M. Nagao, Y. Matsushita, Macromolecules 2018, 51, 1539–1548.
- 17M. Kapnistos, M. Lang, D. Vlassopoulos, W. Pyckhout-Hintzen, D. Richter, D. Cho, T. Chang, M. Rubinstein, Nat. Mater. 2008, 7, 997–1002.
- 18D. Parisi, J. Ahn, T. Chang, D. Vlassopoulos, M. Rubinstein, Macromolecules 2020, 53, 1685–1693.
- 19K. Hagita, T. Murashima, Macromolecules 2021, 54, 8043–8051.
- 20J. Mo, J. Wang, Z. Wang, Y. Lu, L. An, Macromolecules 2022, 55, 1505–1514.
- 21W. Wang, C. S. Biswas, C. Huang, H. Zhang, C.-Y. Liu, F. J. Stadler, B. Du, Z.-C. Yan, Macromolecules 2020, 53, 658–668.
- 22K. Hagita, T. Murashima, Polymer 2021, 218, 123493.
- 23G. S. Grest, T. Ge, S. J. Plimpton, M. Rubinstein, T. C. O'Connor, ACS Polymers Au 2023, 3, 209–216.
- 24L. Garrido, J. E. Mark, S. J. Clarson, J. A. Semlyen, Polym. Commun. 1985, 26, 53–55.
- 25S. J. Clarson, J. E. Mark, J. A. Semlyen, Polym. Commun. 1986, 27, 244–245.
- 26L. C. DeBolt, J. E. Mark, Macromolecules 1987, 20, 2369–2374.
- 27R. Bischoff, S. E. Cray, Prog. Polym. Sci. 1999, 24, 185–219.
- 28B. R. Wood, S. J. Joyce, G. Scrivens, J. A. Semlyen, P. Hodge, R. O'Dell, Polymer 1993, 34, 3059–3063.
- 29W. Huang, H. L. Frisch, Y. Hua, J. A. Semlyen, J. Polym. Sci. Part A 1990, 28, 1807–1812.
- 30T. J. Fyvie, H. L. Frisch, J. A. Semlyen, S. J. Clarson, J. E. Mark, J. Polym. Sci. Part A 1987, 25, 2503–2509.
- 31T. S. Stukenbroeker, D. Solis-Ibarra, R. M. Waymouth, Macromolecules 2014, 47, 8224–8230.
- 32K. Hagita, T. Murashima, M. Ebe, T. Isono, T. Satoh, Polymer 2022, 245, 124683.
- 33K. Hagita, T. Murashima, Polymer 2021, 223, 123705.
- 34T. Isono, T. Sasamori, K. Honda, Y. Mato, T. Yamamoto, K. Tajima, T. Satoh, Macromolecules 2018, 51, 3855–3864.
- 35Y. Mato, M. Sudo, H. Marubayashi, B. J. Ree, K. Tajima, T. Yamamoto, H. Jinnai, T. Isono, T. Satoh, Macromolecules 2021, 54, 9079–9090.
- 36H. Oike, M. Hamada, S. Eguchi, Y. Danda, Y. Tezuka, Macromolecules 2001, 34, 2776–2782.
- 37K. Urayama, T. Kawamura, S. Kohjiya, Polymer 2009, 50, 347–356.
- 38M. Lejars, A. Margaillan, C. Bressy, Chem. Rev. 2012, 112, 4347–4390.
- 39C. Chen, J. Wang, Z. Chen, Langmuir 2004, 20, 10186–10193.
- 40B. P. Mayer, J. P. Lewicki, T. H. Weisgraber, W. Small, S. C. Chinn, R. S. Maxwell, Macromolecules 2011, 44, 8106–8115.
- 41J. E. Mark, R. R. Rahalkar, J. L. Sullivan, J. Chem. Phys. 1979, 70, 1794–1797.
- 42J. E. Mark, M. A. Llorente, J. Am. Chem. Soc. 1980, 102, 632–636.
- 43S. M. Aharoni, Macromolecules 1986, 19, 426–434.
- 44Y. H. Zang, P. J. Carreau, J. Appl. Polym. Sci. 1991, 42, 1965–1968.
- 45M. Appel, G. Fleischer, Macromolecules 1993, 26, 5520–5525.
- 46L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, A. Zirkel, Macromolecules 1994, 27, 4639–4647.
- 47K. Urayama, T. Kawamura, S. Kohjiya, Polymer 2009, 50, 347–356.
- 48K. Urayama, K. Yokoyama, S. Kohjiya, Macromolecules 2001, 34, 4513–4518.
- 49J. Huang, Y. Xu, S. Qi, J. Zhou, W. Shi, T. Zhao, M. Liu, Nat. Commun. 2021, 12, 3610.