Optimizing Electrocatalytic Nitrogen Reduction via Interfacial Electric Field Modulation: Elevating d-Band Center in WS2-WO3 for Enhanced Intermediate Adsorption
Xiaoxuan Wang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShuyuan Li
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorZhi Yuan
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorYanfei Sun
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorZheng Tang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXueying Gao
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorHuiying Zhang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorJingxian Li
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShiyu Wang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorDongchun Yang
Institute of Chemistry Chinese Academy of Sciences, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Jiangzhou Xie
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052 Australia
Search for more papers by this authorCorresponding Author
Zhiyu Yang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Yi-Ming Yan
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXiaoxuan Wang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShuyuan Li
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorZhi Yuan
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorYanfei Sun
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorZheng Tang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXueying Gao
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorHuiying Zhang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorJingxian Li
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShiyu Wang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorDongchun Yang
Institute of Chemistry Chinese Academy of Sciences, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Jiangzhou Xie
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052 Australia
Search for more papers by this authorCorresponding Author
Zhiyu Yang
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Yi-Ming Yan
State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
Electrocatalytic nitrogen reduction reaction (ENRR) has emerged as a promising approach to synthesizing green ammonia under ambient conditions. Tungsten (W) is one of the most effective ENRR catalysts. In this reaction, the protonation of intermediates is the rate-determining step (RDS). Enhancing the adsorption of intermediates is crucial to increase the protonation of intermediates, which can lead to improved catalytic performance. Herein, we constructed a strong interfacial electric field in WS2-WO3 to elevate the d-band center of W, thereby strengthening the adsorption of intermediates. Experimental results demonstrated that this approach led to a significantly improved ENRR performance. Specifically, WS2-WO3 exhibited a high NH3 yield of 62.38 μg h−1 mgcat−1 and a promoted faraday efficiency (FE) of 24.24 %. Furthermore, in situ characterizations and theoretical calculations showed that the strong interfacial electric field in WS2-WO3 upshifted the d-band center of W towards the Fermi level, leading to enhanced adsorption of −NH2 and −NH intermediates on the catalyst surface. This resulted in a significantly promoted reaction rate of the RDS. Overall, our study offers new insights into the relationship between interfacial electric field and d-band center and provides a promising strategy to enhance the intermediates adsorption during the ENRR process.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202303794-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
anie202303794-sup-0001-mp-224_WS2.cif963 B | Supporting Information |
anie202303794-sup-0001-mp-619461_WO3.cif2.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Fang, P. Wu, Y. M. Qian, G. H. Yu, Angew. Chem. Int. Ed. 2021, 60, 4275–4281.
- 2L. Wen, K. Sun, X. Liu, W. Yang, L. Y. Li, H. L. Jiang, Adv. Mater. 2023, 35, 2210669.
- 3Y. Yang, L. Zhang, Z. Hu, Y. Zheng, C. Tang, P. Chen, R. Wang, K. Qiu, J. Mao, T. Ling, S. Z. Qiao, Angew. Chem. Int. Ed. 2020, 59, 4525–4531.
- 4Y. Zhao, F. S. Li, W. Li, Y. Li, C. Liu, Z. Zhao, Y. Shan, Y. F. Ji, L. C. Sun, Angew. Chem. Int. Ed. 2021, 60, 20331–20341.
- 5J. Zhou, X. Chen, M. Guo, W. Hu, B. W. Huang, D. W. Yuan, ACS Catal. 2023, 13, 2190–2201.
- 6X. Lin, Y. Wang, X. Chang, S. Zhen, Z. J. Zhao, J. L. Gong, Angew. Chem. Int. Ed. 2023, 62, e202300122.
- 7K. Ba, G. Wang, T. Ye, X. Wang, Y. Sun, H. Liu, A. Hu, Z. Y. Li, Z. Z. Sun, ACS Catal. 2020, 10, 7864–7870.
- 8G. Lin, Q. Ju, X. Guo, W. Zhao, S. Adimi, J. Ye, Q. Bi, J. Wang, M. H. Yang, F. Q. Huang, Adv. Mater. 2021, 33, 2007509.
- 9M. Kim, J. Chung, T. An, J. Lee, M. Han, S. Lee, W. Choi, J. Kim, S. Han, U. Sim, T. Y. Yu, Appl. Catal. B 2023, 328, 122485.
- 10J. Kang, X. Chen, R. Si, X. Gao, S. Zhang, G. Teobaldi, A. Selloni, M. Liu, L. Guo, Angew. Chem. Int. Ed. 2023, 62, e202217428.
- 11S. Qiang, F. Wu, J. Yu, Y. Liu, B. Ding, Angew. Chem. Int. Ed. 2023, 62, e202217265.
- 12Y. Li, Y. Ji, Y. Zhao, J. Chen, S. Zheng, X. Sang, B. Yang, Z. Li, L. Lei, Z. Wen, X. L. Feng, Y. Hou, Adv. Mater. 2022, 34, 2202240.
- 13M. Han, M. Guo, Y. Yun, Y. Xu, H. Sheng, Y. Chen, Y. Du, K. Ni, Y. Zhu, M. Z. Zhu, Adv. Funct. Mater. 2022, 32, 2202820.
- 14Y. Kong, Y. Li, X. Sang, B. Yang, Z. Li, S. Zheng, Q. Zhang, S. Yao, X. Yang, L. C. Lei, S. Zhou, G. Wu, Y. Hou, Adv. Mater. 2022, 34, 2103548.
- 15L. Shi, Y. Yin, S. Wang, H. Q. Sun, ACS Catal. 2020, 10, 6870–6899.
- 16D. Chen, M. Luo, S. Ning, J. Lan, W. Peng, Y. R. Lu, T. Chan, Y. W. Tan, Small 2022, 18, 2104043.
- 17B. H. R. Suryanto, H. L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nat. Catal. 2019, 2, 290–296.
- 18Y. Tong, H. Guo, D. Liu, X. Yan, P. Su, J. Liang, S. Zhou, J. Liu, G. Q. Lu, S. X. Dou, Angew. Chem. Int. Ed. 2020, 59, 7356–7361.
- 19X. Sun, L. Sun, G. Li, Y. Tuo, C. Ye, J. Yang, J. Low, X. Yu, J. Bitter, Y. Lei, D. S. Wang, Y. D. Li, Angew. Chem. Int. Ed. 2022, 61, e202207677.
- 20D. Y. Li, L. Zhao, J. Wang, C. P. Yang, Adv. Energy Mater. 2023, 13, 2204057.
- 21Z. Jiang, S. Song, X. Zheng, X. Liang, Z. X. Li, H. Gu, Z. Li, Y. Wang, S. H. Liu, W. Chen, D. Wang, Y. D. Li, J. Am. Chem. Soc. 2022, 144, 19619–19626.
- 22F. Xiao, Y. Wang, G. Xu, F. Yang, S. Zhu, C. Sun, Y. Cui, Z. Xu, Q. Zhao, J. Jang, X. Qiu, E. Liu, W. S. Drisdell, Z. D. Wei, M. Gu, K. L. Amine, M. H. Shao, J. Am. Chem. Soc. 2022, 144, 20372–20384.
- 23Y. Gu, B. Xi, W. Tian, H. Zhang, Q. Fu, S. L. Xiong, Adv. Mater. 2021, 33, 2100429.
- 24Y. Zhou, Y. B. Yao, R. Zhao, X. Wang, Z. Z. Fu, D. Wang, H. Wang, L. Zhao, W. Ni, Z. Y. Yang, Y. M. Yan, Angew. Chem. Int. Ed. 2022, 61, e202205832.
- 25L. Lv, X. He, J. Wang, Y. Ruan, S. Ouyang, H. Yuan, T. R. Zhang, Appl. Catal. B 2021, 298, 120531.
- 26M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Wang, S. Li, H. He, G. Zhang, Angew. Chem. Int. Ed. 2021, 60, 10910–10918.
- 27Z. Zhu, Q. Lv, Y. Ni, S. Gao, J. Geng, J. Liang, F. Li, Angew. Chem. Int. Ed. 2022, 61, e202116699.
- 28L. Xu, B. Tian, T. Wang, Y. Yu, Y. Wu, J. Cui, Z. Cao, J. Wu, W. Zhang, Q. Zhang, J. Liu, Z. Li, Y. Tian, Energy Environ. Sci. 2022, 15, 5059–5068.
- 29P. Zhou, Q. Xu, H. Li, Y. Wang, B. Yan, Y. Zhou, J. Chen, J. Zhang, K. Wang, Angew. Chem. Int. Ed. 2015, 54, 15226–15230.
- 30L. Yang, X. Zhu, S. Xiong, X. Wu, Y. Shan, P. K. Chu, ACS Appl. Mater. Interfaces 2016, 8, 13966–13972.
- 31B. Zheng, W. Zheng, Y. Jiang, S. Chen, D. Li, C. Ma, X. Wang, W. Huang, X. Zhang, H. Liu, F. Jiang, L. Li, X. Zhuang, X. Wang, A. Pan, J. Am. Chem. Soc. 2019, 141, 11754–11758.
- 32C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew. Chem. Int. Ed. 2018, 57, 6073–6076.
- 33Y. Lin, C. Yang, S. Wu, X. Li, Y. Chen, W. L. Yang, Adv. Funct. Mater. 2020, 30, 2002918.
- 34Z. Zhu, H. Huang, L. Liu, F. Chen, N. Tian, Y. Zhang, H. Yu, Angew. Chem. Int. Ed. 2022, 61, e202203519.
- 35X. Zhao, X. Li, L. An, L. Zheng, J. Yang, D. Wang, Angew. Chem. Int. Ed. 2022, 61, e202206588.
- 36Q. Meng, C. Lv, J. Sun, W. Hong, W. Xing, L. Qiang, G. Chen, X. Jin, Appl. Catal. B 2019, 256, 117781.
- 37Y. Guo, W. Shi, Y. Zhu, Y. Xu, F. Cui, Appl. Catal. B 2020, 262, 118262.
- 38J. Yang, J. Jing, W. Li, Y. Zhu, Adv. Sci. 2022, 9, 2201134.
- 39Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, C. Li, J. Phys. Chem. Lett. 2017, 8, 1419–1423.
- 40Z. Xing, J. Hu, M. Ma, H. Lin, Y. An, Z. Liu, Y. Zhang, J. Li, S. Yang, J. Am. Chem. Soc. 2019, 141, 19715–19727.
- 41Y. Wan, H. Zhou, M. Zheng, Z. H. Huang, F. Kang, J. Li, R. Lv, Adv. Funct. Mater. 2021, 31, 2100300.
- 42Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui, Y. Liu, C. Xing, C. Zhang, D. Zhang, Z. Wang, X. Chen, Y. Gao, B. Huang, Y. Li, Angew. Chem. Int. Ed. 2020, 59, 13021–13027.
- 43J. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.
- 44C. Yang, B. Huang, S. Bai, Y. Feng, Q. Shao, X. Huang, Adv. Mater. 2020, 32, 2001267.
- 45N. Zhang, L. Li, J. Wang, Z. Hu, Q. Shao, X. Xiao, X. Huang, Angew. Chem. Int. Ed. 2020, 59, 8066–8071.
- 46S. Liu, T. Qian, M. Wang, H. Ji, X. Shen, C. Wang, C. Yan, Nat. Catal. 2021, 4, 322–331.
- 47K. Chu, Q.-Q. Li, Y.-P. Liu, J. Wang, Y.-H. Cheng, Appl. Catal. B 2020, 267, 118693.