Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Zn-Ion Batteries
Jinrong Luo
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLiang Xu
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYijing Zhou
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorTianran Yan
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorYanyan Shao
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorDongzi Yang
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorLiang Zhang
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorZhou Xia
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorTianheng Wang
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorProf. Liang Zhang
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Tao Cheng
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yuanlong Shao
School of Materials Science and Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorJinrong Luo
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLiang Xu
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYijing Zhou
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorTianran Yan
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorYanyan Shao
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorDongzi Yang
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorLiang Zhang
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorZhou Xia
College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorTianheng Wang
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorProf. Liang Zhang
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Tao Cheng
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yuanlong Shao
School of Materials Science and Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorGraphical Abstract
The performance of aqueous Zn-ion batteries is improved by regulating the inner Helmholtz plane (IHP) chemistry. Pyridine (Py) as high donor number organic electrolyte additive (only 1 vol. % addition) is used to efficiently regulate the solvation sheath structure, which results in depressed H2O activity at the IHP interface. The thus-formed IHP interface enables a superior stable Zn anode with high reversibility and utilization rate.
Abstract
The performance of aqueous Zn ion batteries (AZIBs) is highly dependent on inner Helmholtz plane (IHP) chemistry. Notorious parasitic reactions containing hydrogen evolution reactions (HER) and Zn dendrites both originate from abundant free H2O and random Zn deposition inside active IHP. Here, we report a universal high donor number (DN) additive pyridine (Py) with only 1 vol. % addition (Py-to-H2O volume ratio), for regulating molecule distribution inside IHP. Density functional theory (DFT) calculations and molecular dynamics (MD) simulation verify that incorporated Py additive could tailor Zn2+ solvation sheath and exclude H2O molecules from IHP effectively, which is in favor of preventing H2O decomposition. Consequently, even at extreme conditions such as high depth of discharge (DOD) of 80 %, the symmetric cell based on Py additive can sustain approximately 500 h long-term stability. This efficient strategy with high DN additives furnishes a promising direction for designing novel electrolytes and promoting the practical application of AZIBs, despite inevitably introducing trace organic additives.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202302302-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Wang, S. Liang, C. Chen, X. Xie, J. Chen, Z. Liu, Y. Tang, B. Lu, J. Zhou, Adv. Mater. 2022, 34, 2202733.
- 2M. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi, W. Mai, Angew. Chem. Int. Ed. 2022, 61, e202210979.
- 3L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X. Q. Yang, K. Xu, O. Borodin, C. Wang, Nat. Nanotechnol. 2021, 16, 902–910.
- 4B. Liu, C. Wei, Z. Zhu, Y. Fang, Z. Bian, X. Lei, Y. Zhou, C. Tang, Y. Qian, G. Wang, Angew. Chem. Int. Ed. 2022, 61, e202212780.
- 5D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao, Y. Guo, Z. Zhang, S. Wu, L. Yin, Z. Weng, F. Kang, Q. H. Yang, Nat. Sustainability 2021, 5, 205–213.
- 6L. Ma, T. P. Pollard, Y. Zhang, M. A. Schroeder, M. S. Ding, A. V. Cresce, R. Sun, D. R. Baker, B. A. Helms, E. J. Maginn, C. Wang, O. Borodin, K. Xu, Angew. Chem. Int. Ed. 2021, 60, 12438–12445.
- 7Q. Li, A. Chen, D. Wang, Z. Pei, C. Zhi, Joule 2022, 6, 273–279.
- 8Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 2019, 12, 1938–1949.
- 9Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu, B. Hu, W. Weng, Y. Yao, J. Zeng, Z. Chen, P. Liu, Y. Liu, G. Li, J. Guo, H. Lu, Z. Guo, Nat. Commun. 2021, 12, 6606.
- 10K. Zhao, G. Fan, J. Liu, F. Liu, J. Li, X. Zhou, Y. Ni, M. Yu, Y. M. Zhang, H. Su, Q. Liu, F. Cheng, J. Am. Chem. Soc. 2022, 144, 11129–11137.
- 11Z. Xia, S. Li, G. Wu, Y. Shao, D. Yang, J. Luo, Z. Jiao, J. Sun, Y. Shao, Adv. Mater. 2022, 34, 2203905.
- 12Y. Shao, Z. Sun, Z. Tian, S. Li, G. Wu, M. Wang, X. Tong, F. Shen, Z. Xia, V. Tung, J. Sun, Y. Shao, Adv. Funct. Mater. 2021, 31, 2007843.
- 13Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin, L. Li, Z. Yan, Q. Zhao, K. Zhang, J. Chen, Angew. Chem. Int. Ed. 2021, 60, 23357–23364.
- 14Y. Jiao, F. Li, X. Jin, Q. Lei, L. Li, L. Wang, T. Ye, E. He, J. Wang, H. Chen, J. Lu, R. Gao, Q. Li, C. Jiang, J. Li, G. He, M. Liao, H. Zhang, I. P. Parkin, H. Peng, Y. Zhang, Adv. Funct. Mater. 2021, 31, 2107652.
- 15J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S. Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 7366–7375.
- 16W. Li, X. Guo, P. Geng, M. Du, Q. Jing, X. Chen, G. Zhang, H. Li, Q. Xu, P. Braunstein, H. Pang, Adv. Mater. 2021, 33, 2105163.
- 17T. Chen, F. Wang, S. Cao, Y. Bai, S. Zheng, W. Li, S. Zhang, S. X. Hu, H. Pang, Adv. Mater. 2022, 34, 2201779.
- 18T. Lv, G. Zhu, S. Dong, Q. Kong, Y. Peng, S. Jiang, G. Zhang, Z. Yang, S. Yang, X. Dong, H. Pang, Y. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202216089.
- 19J. Gu, Y. Peng, T. Zhou, J. Ma, H. Pang, Y. Yamauchi, Nano Res. Energy 2022, 1, e9120009.
- 20T. Chen, Y. Bai, X. Xiao, H. Pang, Chem. Eng. J. 2021, 413, 127523.
- 21K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang, H. Wan, J. Cui, J. Zhang, H. Wang, H. Wang, Adv. Energy Mater. 2022, 12, 2103557.
- 22Z. Chang, H. Yang, Y. Qiao, X. Zhu, P. He, H. Zhou, Adv. Mater. 2022, 34, 2201339.
- 23Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao, S. Chen, Energy Environ. Sci. 2022, 15, 4748–4760.
- 24L. Miao, R. Wang, S. Di, Z. Qian, L. Zhang, W. Xin, M. Liu, Z. Zhu, S. Chu, Y. Du, N. Zhang, ACS Nano 2022, 16, 9667–9678.
- 25X. He, Y. Cui, Y. Qian, Y. Wu, H. Ling, H. Zhang, X. Y. Kong, Y. Zhao, M. Xue, L. Jiang, L. Wen, J. Am. Chem. Soc. 2022, 144, 11168–11177.
- 26C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang, A. Hu, Z. Liu, X. Chen, Adv. Mater. 2021, 33, 2100445.
- 27D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Angew. Chem. Int. Ed. 2021, 60, 13035–13041.
- 28T. Wang, P. Wang, L. Pan, Z. He, L. Dai, L. Wang, S. Liu, S. C. Jun, B. Lu, S. Liang, J. Zhou, Adv. Energy Mater. 2023, 13, 2203523.
- 29B. Li, S. Liu, Y. Geng, C. Mao, L. Dai, L. Wang, S. C. Jun, B. Lu, Z. He, J. Zhou, Adv. Funct. Mater. 2023, 33, 2214033.
- 30C. Mao, Y. Chang, X. Zhao, X. Dong, Y. Geng, N. Zhang, L. Dai, X. Wu, L. Wang, Z. He, J. Energy Chem. 2022, 75, 135–153.
- 31M. Zhao, Y. Lv, S. Zhao, Y. Xiao, J. Niu, Q. Yang, J. Qiu, F. Wang, S. Chen, Adv. Mater. 2022, 34, 2206239.
- 32X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi, R. Huang, B. Liu, S. Li, Y. Wu, M. Wang, Y. Su, S. Dou, J. Sun, Adv. Mater. 2021, 33, 2105951.
- 33Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang, L. Dai, P. Zhou, B. Lu, J. Zhou, Z. He, Nano-Micro Lett. 2022, 14, 218.
- 34L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X. Q. Yang, C. Wang, J. Am. Chem. Soc. 2020, 142, 21404–21409.
- 35P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Angew. Chem. Int. Ed. 2021, 60, 18247–18255.
- 36T. C. Li, Y. Lim, X. L. Li, S. Luo, C. Lin, D. Fang, S. Xia, Y. Wang, H. Y. Yang, Adv. Energy Mater. 2022, 12, 2103231.
- 37Y. Geng, L. Pan, Z. Peng, Z. Sun, H. Lin, C. Mao, L. Wang, L. Dai, H. Liu, K. Pan, X. Wu, Q. Zhang, Z. He, Energy Storage Mater. 2022, 51, 733–755.
- 38M. Yang, J. Zhu, S. Bi, R. Wang, Z. Niu, Adv. Mater. 2022, 34, 2201744.
- 39F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543–549.
- 40N. Chang, T. Li, R. Li, S. Wang, Y. Yin, H. Zhang, X. Li, Energy Environ. Sci. 2020, 13, 3527–3535.
- 41T. Wang, Z. Tian, Z. You, Z. Li, H. Cheng, W. Li, Y. Yang, Y. Zhou, Q. Zhong, Y. Lai, Energy Storage Mater. 2022, 45, 24–32.
- 42L. Qian, W. Yao, R. Yao, Y. Sui, H. Zhu, F. Wang, J. Zhao, C. Zhi, C. Yang, Adv. Funct. Mater. 2021, 31, 2105736.
- 43S. Liu, J. Mao, W. K. Pang, J. Vongsvivut, X. Zeng, L. Thomsen, Y. Wang, J. Liu, D. Li, Z. Guo, Adv. Funct. Mater. 2021, 31, 2104281.
- 44Y. X. Yao, X. Chen, C. Yan, X. Q. Zhang, W. L. Cai, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4090–4097.
- 45C. Yan, H. R. Li, X. Chen, X. Q. Zhang, X. B. Cheng, R. Xu, J. Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2019, 141, 9422–9429.
- 46L. Chen, Y. Gao, Y. Cheng, H. Li, Z. Wang, Z. Li, R. Q. Zhang, Nanoscale 2016, 8, 4086–4093.
- 47M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan, M. Chuai, N. Chen, Y. Xu, X. Zheng, Z. Li, W. Chen, Angew. Chem. Int. Ed. 2023, 62, e202214966.
- 48Z. Hou, H. Tan, Y. Gao, M. Li, Z. Lu, B. Zhang, J. Mater. Chem. A 2020, 8, 19367–19374.
- 49G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie, S. Di, Y. Wang, L. Wang, N. Zhang, Energy Storage Mater. 2022, 47, 203–210.
- 50C. Li, R. Kingsbury, L. Zhou, A. Shyamsunder, K. A. Persson, L. F. Nazar, ACS Energy Lett. 2022, 7, 533–540.
- 51Y. Sun, Z. Xu, X. Xu, Y. Nie, J. Tu, A. Zhou, J. Zhang, L. Qiu, F. Chen, J. Xie, T. Zhu, X. Zhao, Energy Storage Mater. 2022, 48, 192–204.
- 52Y. Zhang, M. Zhu, K. Wu, F. Yu, G. Wang, G. Xu, M. Wu, H. K. Liu, S. X. Dou, C. Wu, J. Mater. Chem. A 2021, 9, 4253–4261.
- 53W. Deng, Z. Xu, X. Wang, Energy Storage Mater. 2022, 52, 52–60.
- 54X. Xie, S. Liang, J. Gao, S. Guo, J. Guo, C. Wang, G. Xu, X. Wu, G. Chen, J. Zhou, Energy Environ. Sci. 2020, 13, 503–510.
- 55Y. Shao, J. Zhao, W. Hu, Z. Xia, J. Luo, Y. Zhou, L. Zhang, X. Yang, N. Ma, D. Yang, Q. Shi, J. Sun, L. Zhang, J. Hui, Y. Shao, Small 2022, 18, 2107163.
- 56X. Liu, F. Yang, W. Xu, Y. Zeng, J. He, X. Lu, Adv. Sci. 2020, 7, 2002173.
- 57C. Li, Z. Sun, T. Yang, L. Yu, N. Wei, Z. Tian, J. Cai, J. Lv, Y. Shao, M. H. Rummeli, J. Sun, Z. Liu, Adv. Mater. 2020, 32, 2003425.
- 58C. Deng, X. Xie, J. Han, B. Lu, S. Liang, J. Zhou, Adv. Funct. Mater. 2021, 31, 2103227.
- 59L. Wang, W. Huang, W. Guo, Z. H. Guo, C. Chang, L. Gao, X. Pu, Adv. Funct. Mater. 2022, 32, 2108533.
- 60W. Guo, Z. Cong, Z. Guo, C. Chang, X. Liang, Y. Liu, W. Hu, X. Pu, Energy Storage Mater. 2020, 30, 104–112.
- 61Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong, X. Lu, Adv. Mater. 2019, 31, 1903675.
- 62M. Zhu, J. Hu, Q. Lu, H. Dong, D. D. Karnaushenko, C. Becker, D. Karnaushenko, Y. Li, H. Tang, Z. Qu, J. Ge, O. G. Schmidt, Adv. Mater. 2021, 33, 2007497.
- 63S. Wu, S. Zhang, Y. Chu, Z. Hu, J. Luo, Adv. Funct. Mater. 2021, 31, 2107397.
- 64Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2019, 58, 15841–15847.
- 65R. Zhao, Y. Yang, G. Liu, R. Zhu, J. Huang, Z. Chen, Z. Gao, X. Chen, L. Qie, Adv. Funct. Mater. 2021, 31, 2001867.
- 66F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Nat. Commun. 2018, 9, 1656.
- 67H. Jin, S. Dai, K. Xie, Y. Luo, K. Liu, Z. Zhu, L. Huang, L. Huang, J. Zhou, Small 2022, 18, 2106441.
- 68D. Han, Z. Wang, H. Lu, H. Li, C. Cui, Z. Zhang, R. Sun, C. Geng, Q. Liang, X. Guo, Y. Mo, X. Zhi, F. Kang, Z. Weng, Q. H. Yang, Adv. Energy Mater. 2022, 12, 2102982.
- 69D. S. Liu, Y. Zhang, S. Liu, L. Wei, S. You, D. Chen, M. Ye, Y. Yang, X. Rui, Y. Qin, C. C. Li, Adv. Funct. Mater. 2022, 32, 2111714.
- 70H. Yan, S. Li, H. Xu, H. Chen, S. Yang, B. Li, Adv. Energy Mater. 2022, 12, 2201599.