Manipulating Electron-Transfer Events in [Fe4Co4] Cubes via a Mixed-Ligand Approach: The Impact of Elastic Frustration
Zi-Yi Chen
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorQi Liu
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorYue Cheng
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorYi-Fei Deng
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorShihao Liu
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Xin-Yi Wang
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Yuan-Zhu Zhang
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorZi-Yi Chen
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorQi Liu
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorYue Cheng
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorYi-Fei Deng
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorShihao Liu
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Xin-Yi Wang
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Yuan-Zhu Zhang
Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 China
Search for more papers by this authorGraphical Abstract
Two cyanide-bridged [Fe4Co4] cubes were prepared via a mixed-ligand approach. The molecular origins of their distinct (incomplete vs. complete) metal-to-metal electron transfer (MMET) properties were identified as the presence and absence of the inter-cluster alkynyl-alkynyl and CH/π interactions. These compete with the cluster-anion interactions, resulting in the underlying elastic frustration and stopping the complete spin transition in 1.
Abstract
The engineering of intermolecular interaction is challenging but critical for magnetically switchable molecules. Here, we prepared two cyanide-bridged [Fe4Co4] cube complexes via the alkynyl- and alcohol-functionalized trispyrazoyl capping ligands. The alkynyl-functionalized complex 1 exhibited a thermally-induced incomplete metal-to-metal electron transfer (MMET) behaviour at around 220 K, while the mixed alkynyl/alcohol-functionalized cube of 2 showed a complete and abrupt MMET behaviour at 232 K. Remarkably, both compounds showed a long-lived photo-induced metastable state up to 200 K. The crystallographic study demonstrated that the incomplete transition of 1 was likely due to the possible elastic frustration originating from the competition between the anion-propagated elastic interactions and inter-cluster alkynyl-alkynyl & CH-alkynyl interactions, whereas the latter are eliminated in 2 as a result of the partial substitution by the alcohol-functionalized ligand. Additionally, the introduction of chemically distinguishable cobalt centers within the cube unit of 2 did not lead to a two-step but a one-step transition, possibly because of the strong ferroelastic intramolecular interaction through the cyanide bridges.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202301124-sup-0001-CP1_100KQ.cif11.8 MB | Supporting Information |
anie202301124-sup-0001-CP1_180K.cif4.2 MB | Supporting Information |
anie202301124-sup-0001-CP1_260K.cif8.4 MB | Supporting Information |
anie202301124-sup-0001-CP2_100K.cif9.9 MB | Supporting Information |
anie202301124-sup-0001-CP2_100KQ.cif5.8 MB | Supporting Information |
anie202301124-sup-0001-CP2_260K.cif6.2 MB | Supporting Information |
anie202301124-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aO. Sato, Nat. Chem. 2016, 8, 644–656;
- 1b Spin-Crossover Materials: Properties and Applications (Ed.: M. A. Halcrow), Wiley, Hoboken, 2013, p. 568;
10.1002/9781118519301 Google Scholar
- 1cE. Coronado, Nat. Rev. Mater. 2020, 5, 87–104;
- 1dA. Bousseksou, G. Molnár, L. Salmon, W. Nicolazzi, Chem. Soc. Rev. 2011, 40, 3313–3335;
- 1eK. R. Dunbar, C. Achim, M. Shatruk in Spin-Crossover Materials: Properties and Applications (Ed. M. A. Halcrow), Wiley, Hoboken, 2013, pp. 171–202;
10.1002/9781118519301.ch6 Google Scholar
- 1fY.-S. Meng, T. Liu, Acc. Chem. Res. 2019, 52, 1369–1379;
- 1gN. Hoshino, F. Iijima, G. N. Newton, N. Yoshida, T. Shiga, H. Nojiri, A. Nakao, R. Kumai, Y. Murakami, H. Oshio, Nat. Chem. 2012, 4, 921–926;
- 1hT. Tezgerevska, K. G. Alley, C. Boskovic, Coord. Chem. Rev. 2014, 268, 23–40;
- 1iK. S. Kumar, M. Ruben, Angew. Chem. Int. Ed. 2021, 60, 7502–7521;
- 1jM. Arczyński, J. Stanek, B. Sieklucka, K. R. Dunbar, D. Pinkowicz, J. Am. Chem. Soc. 2019, 141, 19067–19077.
- 2D. A. Reed, B. K. Keitz, J. Oktawiec, J. A. Mason, T. Runčevski, D. J. Xiao, L. E. Darago, V. Crocellà, S. Bordiga, J. R. Long, Nature 2017, 550, 96.
- 3J.-X. Hu, Y. Xu, Y.-S. Meng, L. Zhao, S. Hayami, O. Sato, T. Liu, Angew. Chem. Int. Ed. 2017, 56, 13052–13055.
- 4
- 4aH. Kurz, K. Schötz, I. Papadopoulos, F. W. Heinemann, H. Maid, D. M. Guldi, A. Köhler, G. Hörner, B. Weber, J. Am. Chem. Soc. 2021, 143, 3466–3480;
- 4bC. F. Wang, R. F. Li, X. Y. Chen, R. J. Wei, L. S. Zheng, J. Tao, Angew. Chem. Int. Ed. 2015, 54, 1574–1577;
- 4cJ. Yuan, S.-Q. Wu, M.-J. Liu, O. Sato, H.-Z. Kou, J. Am. Chem. Soc. 2018, 140, 9426–9433;
- 4dS. Ohkoshi, K. Nakagawa, K. Imoto, H. Tokoro, Y. Shibata, K. Okamoto, Y. Miyamoto, M. Komine, M. Yoshikiyo, A. Namai, Nat. Chem. 2020, 12, 338–344.
- 5
- 5aR. Akiyoshi, Y. Komatsumaru, M. Donoshita, S. Dekura, Y. Yoshida, H. Kitagawa, Y. Kitagawa, L. F. Lindoy, S. Hayami, Angew. Chem. Int. Ed. 2021, 60, 12717–12722;
- 5bV. Jornet-Mollá, Y. Duan, C. Giménez-Saiz, Y.-Y. Tang, P.-F. Li, F. M. Romero, R.-G. Xiong, Angew. Chem. Int. Ed. 2017, 56, 14052–14056.
- 6K. Ridier, A.-C. Bas, V. Shalabaeva, W. Nicolazzi, L. Salmon, G. Molnár, A. Bousseksou, M. Lorenc, R. Bertoni, E. Collet, H. Cailleau, Adv. Mater. 2019, 31, 1901361.
- 7G. Molnár, S. Rat, L. Salmon, W. Nicolazzi, A. Bousseksou, Adv. Mater. 2018, 30, 1703862.
- 8D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, R. P. Cowburn, Science 2005, 309, 1688–1692.
- 9H. J. Shepherd, I. A. Gural'skiy, C. M. Quintero, S. Tricard, L. Salmon, G. Molnár, A. Bousseksou, Nat. Commun. 2013, 4, 2607.
- 10O. Sato, A. Fujishima, T. Iyoda, K. Hashimoto, Science 1996, 272, 704.
- 11
- 11aD. Aguilà, Y. Prado, E. S. Koumousi, C. Mathonière, R. Clérac, Chem. Soc. Rev. 2016, 45, 203–224;
- 11bY.-S. Meng, O. Sato, T. Liu, Angew. Chem. Int. Ed. 2018, 57, 12216–12226;
- 11cC. Mathonière, Eur. J. Inorg. Chem. 2018, 248–258.
- 12
- 12aD. Li, R. Clérac, O. Roubeau, E. Harté, C. Mathonière, R. Le Bris, S. M. Holmes, J. Am. Chem. Soc. 2008, 130, 252–258;
- 12bJ. Glatz, J.-R. Jiménez, L. Godeffroy, H. J. Bardeleben, L. Fillaud, E. Maisonhaute, Y. Li, L.-M. Chamoreau, R. Lescouëzec, J. Am. Chem. Soc. 2022, 144, 10888–10901;
- 12cD. Garnier, J.-R. Jiménez, Y. Li, J. von Bardeleben, Y. Journaux, T. Augenstein, E. M. B. Moos, M. T. Gamer, F. Breher, R. Lescouëzec, Chem. Sci. 2016, 7, 4825–4831.
- 13
- 13aY. Zhang, D. Li, R. Clérac, M. Kalisz, C. Mathonière, S. M. Holmes, Angew. Chem. Int. Ed. 2010, 49, 3752–3756;
- 13bY.-Z. Zhang, P. Ferko, D. Siretanu, R. Ababei, N. P. Rath, M. J. Shaw, R. Clérac, C. Mathonière, S. M. Holmes, J. Am. Chem. Soc. 2014, 136, 16854–16864;
- 13cM. Nihei, Y. Sekine, N. Suganami, K. Nakazawa, A. Nakao, H. Nakao, Y. Murakami, H. Oshio, J. Am. Chem. Soc. 2011, 133, 3592–3600;
- 13dY. Li, A. Benchohra, B. Xu, B. Baptiste, K. Béneut, P. Parisiades, L. Delbes, A. Soyer, K. Boukheddaden, R. Lescouëzec, Angew. Chem. Int. Ed. 2020, 59, 17272–17276.
- 14
- 14aS. Liu, Y.-F. Deng, Z.-Y. Chen, L. Meng, X. Chang, Z. Zheng, Y.-Z. Zhang, CCS Chem. 2020, 2, 2530–2538;
- 14bL. Meng, Y.-F. Deng, S. Liu, Z. Zheng, Y.-Z. Zhang, Sci. China Chem. 2021, 64, 1340–1348.
- 15C.-Q. Jiao, Y.-S. Meng, Y. Yu, W.-J. Jiang, W. Wen, H. Oshio, Y. Luo, C.-Y. Duan, T. Liu, Angew. Chem. Int. Ed. 2019, 58, 17009–17015.
- 16M. Nihei, K. Shiroyanagi, M. Kato, R. Takayama, H. Murakami, Y. Kera, Y. Sekine, Y. Sekine, H. Oshio, Inorg. Chem. 2019, 58, 11912–11919.
- 17
- 17aM. Nihei, Y. Yanai, I. J. Hsu, Y. Sekine, H. Oshio, Angew. Chem. Int. Ed. 2017, 56, 591–594;
- 17bC.-Q. Jiao, W.-J. Jiang, Y.-S. Meng, W. Wen, L. Zhao, J.-L. Wang, J.-X. Hu, G. G. Gurzadyan, C.-Y. Duan, T. Liu, Natl. Sci. Rev. 2018, 5, 507–515.
- 18
- 18aH. Spiering, Top. Curr. Chem. 2004, 235, 171–195;
- 18bM. Nishino, K. Boukheddaden, Y. Konishi, S. Miyashita, Phys. Rev. Lett. 2007, 98, 247203;
- 18cM. Nishino, S. Miyashita, Phys. Rev. B 2013, 88, 014108;
- 18dM. Paez-Espejo, M. Sy, K. Boukheddaden, J. Am. Chem. Soc. 2016, 138, 3202–3210;
- 18eJ. Cruddas, B. J. Powell, J. Am. Chem. Soc. 2019, 141, 19790–19799;
- 18fV. B. Jakobsen, E. Trzop, L. C. Gavin, E. Dobbelaar, S. Chikara, X. Ding, K. Esien, H. Müller-Bunz, S. Felton, V. S. Zapf, E. Collet, M. A. Carpenter, G. G. Morgan, Angew. Chem. Int. Ed. 2020, 59, 13305–13312;
- 18gS. Chorazy, T. Charytanowicz, D. Pinkowicz, J. Wang, K. Nakabayashi, S. Klimke, F. Renz, S. Ohkoshi, B. Sieklucka, Angew. Chem. Int. Ed. 2020, 59, 15741–15749.
- 19
- 19aT. Boonprab, S. J. Lee, S. G. Telfer, K. S. Murray, W. Phonsri, G. Chastanet, E. Collet, E. Trzop, G. N. L. Jameson, P. Harding, D. J. Harding, Angew. Chem. Int. Ed. 2019, 58, 11811–11815;
- 19bY.-C. Chen, Y. Meng, Y.-J. Dong, X.-W. Song, G.-Z. Huang, C.-L. Zhang, Z.-P. Ni, J. Navařík, O. Malina, R. Zbořil, M.-L. Tong, Chem. Sci. 2020, 11, 3281–3289.
- 20
- 20aY. S. Ye, X. Q. Chen, Y. D. Cai, B. Fei, P. Dechambenoit, M. Rouzières, C. Mathonière, R. Clérac, X. Bao, Angew. Chem. Int. Ed. 2019, 58, 18888–18891;
- 20bV. Gómez, C. S. de Pipaón, P. Maldonado-Illescas, J. C. Waerenborgh, E. Martin, J. Benet-Buchholz, J. R. Galán-Mascarós, J. Am. Chem. Soc. 2015, 137, 11924–11927.
- 21
- 21aM. J. Murphy, K. A. Zenere, F. Ragon, P. D. Southon, C. J. Kepert, S. M. Neville, J. Am. Chem. Soc. 2017, 139, 1330–1335;
- 21bK. A. Zenere, S. G. Duyker, E. Trzop, E. Collet, B. Chan, P. W. Doheny, C. J. Kepert, S. M. Neville, Chem. Sci. 2018, 9, 5623–5629.
- 22
- 22aJ.-F. Létard, L. Capes, G. Chastanet, N. Moliner, S. Létard, J.-A. Real, O. Kahn, Chem. Phys. Lett. 1999, 313, 115–120;
- 22bJ.-F. Létard, P. Guionneau, O. Nguyen, J. S. Costa, S. Marcén, G. Chastanet, M. Marchivie, L. Goux-Capes, Chem. Eur. J. 2005, 11, 4582–4589;
- 22cN. Paradis, G. Chastanet, J. F. Létard, Eur. J. Inorg. Chem. 2012, 3618–3624.
- 23Deposition Numbers 2094050 (for 1260K), 2094049 (for 1180K), 2094048 (for 1100KQ), 2094060 (for 2260K), 2094051 (for 2100K) and 2094351 (for 2100KQ) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 24N. Pittala, F. Thétiot, C. Charles, S. Triki, K. Boukheddaden, G. Chastanetc, M. Marchivie, Chem. Commun. 2017, 53, 8356–8359.
- 25A. Mondal, Y. Li, P. Herson, M. Seuleiman, M. L. Boillot, E. Riviere, M. Julve, L. Rechignat, A. Bousseksou, R. Lescouezec, Chem. Commun. 2012, 48, 5653–5655.
- 26
- 26aK. Zhang, S. Kang, Z. S. Yao, K. Nakamura, T. Yamamoto, Y. Einaga, N. Azuma, Y. Miyazaki, M. Nakano, S. Kanegawa, O. Sato, Angew. Chem. Int. Ed. 2016, 55, 6047–6050;
- 26bD. L. Reger, C. A. Little, A. L. Rheingold, M. Lam, L. M. Liable-Sands, B. Rhagitan, T. Conolino, A. Mohan, G. J. Long, V. Briois, F. Grandjean, Inorg. Chem. 2001, 40, 1508–1520.