Synergistic Interfacial Bonding in Reduced Graphene Oxide Fiber Cathodes Containing Polypyrrole@sulfur Nanospheres for Flexible Energy Storage
Lei Huang
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorTuxiang Guan
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHan Su
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYu Zhong
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Feng Cao
Department of Engineering Technology, Huzhou College, Huzhou, 313000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yongqi Zhang
Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371 China
Search for more papers by this authorCorresponding Author
Prof. Xinhui Xia
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
School of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorProf. Xiuli Wang
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Ningzhong Bao
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009 P. R. China
Search for more papers by this authorProf. Jiangping Tu
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLei Huang
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorTuxiang Guan
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHan Su
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYu Zhong
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Feng Cao
Department of Engineering Technology, Huzhou College, Huzhou, 313000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yongqi Zhang
Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371 China
Search for more papers by this authorCorresponding Author
Prof. Xinhui Xia
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
School of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorProf. Xiuli Wang
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Ningzhong Bao
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009 P. R. China
Search for more papers by this authorProf. Jiangping Tu
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorGraphical Abstract
We report a synergistic interface bonding strategy to construct novel flexible fiber-shaped composite cathodes, in which polypyrrole@sulfur (PPy@S) nanospheres (≈500 nm) are homogeneously implanted into the built-in cavity of self-assembled reduced graphene oxide fibers (rGOFs) by a facile microfluidic assembly method. The PPy@S/rGOFs cathode exhibits good mechanical property, excellent electronic conductivity and enhanced cycling performance and outstanding high-rate capacity.
Abstract
Flexible lithium sulfur batteries with high energy density and good mechanical flexibility are highly desirable. Here, we report a synergistic interface bonding enhancement strategy to construct flexible fiber-shaped composite cathodes, in which polypyrrole@sulfur (PPy@S) nanospheres are homogeneously implanted into the built-in cavity of self-assembled reduced graphene oxide fibers (rGOFs) by a facile microfluidic assembly method. In this architecture, sulfur nanospheres and lithium polysulfides are synergistically hosted by carbon and polymer interface, which work together to provide enhanced interface chemical bonding to endow the cathode with good adsorption ability, fast reaction kinetics, and excellent mechanical flexibility. Consequently, the PPy@S/rGOFs cathode shows enhanced electrochemical performance and high-rate capability. COMSOL Multiphysics simulations and density functional theory (DFT) calculations are conducted to elucidate the enhanced electrochemical performance. In addition, a flexible Li−S pouch cell is assembled and delivers a high areal capacity of 5.8 mAh cm−2 at 0.2 A g−1. Our work offers a new strategy for preparation of advanced cathodes for flexible batteries.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202212151-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Gao, Q. Guo, Q. Zhang, Y. Cui, Z. Zheng, Adv. Energy Mater. 2021, 11, 2002580;
- 1bC. Zhao, A. Daali, I. Hwang, T. Li, X. Huang, D. Robertson, Z. Yang, S. Trask, W. Xu, C.-J. Sun, G.-L. Xu, K. Amine, Angew. Chem. Int. Ed. 2022, 61, e202203466; Angew. Chem. 2022, 134, e202203466.
- 2
- 2aW.-J. Chen, B.-Q. Li, C.-X. Zhao, M. Zhao, T.-Q. Yuan, R.-C. Sun, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 10732–10745; Angew. Chem. 2020, 132, 10821–10834;
- 2bH. Wang, W. Zhang, H. Liu, Z. Guo, Angew. Chem. Int. Ed. 2016, 55, 3992–3996; Angew. Chem. 2016, 128, 4060–4064.
- 3
- 3aL. Huang, S. Shen, Y. Zhong, Y. Zhang, L. Zhang, X. Wang, X. Xia, X. Tong, J. Zhou, J. Tu, Adv. Mater. 2022, 34, 2107415;
- 3bR. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, J.-M. Tarascon, J. Am. Chem. Soc. 2011, 133, 16154–16160;
- 3cC. Wang, Y. Li, F. Cao, Y. Zhang, X. Xia, L. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 10457–10466.
- 4
- 4aW. Li, K. Chen, Q. Xu, X. Li, Q. Zhang, J. Weng, J. Xu, Angew. Chem. Int. Ed. 2021, 60, 21512–21520; Angew. Chem. 2021, 133, 21682–21690;
- 4bW.-G. Lim, S. Kim, C. Jo, J. Lee, Angew. Chem. Int. Ed. 2019, 58, 18746–18757; Angew. Chem. 2019, 131, 18920–18931.
- 5B. Liu, Y. Zhang, Z. Wang, C. Ai, S. Liu, P. Liu, Y. Zhong, S. Lin, S. Deng, Q. Liu, G. Pan, X. Wang, X. Xia, J. Tu, Adv. Mater. 2020, 32, 2003657.
- 6
- 6aH. Shi, X. Zhao, Z.-S. Wu, Y. Dong, P. Lu, J. Chen, W. Ren, H.-M. Cheng, X. Bao, Nano Energy 2019, 60, 743–751;
- 6bH. Chen, G. Zhou, D. Boyle, J. Wan, H. Wang, D. Lin, D. Mackanic, Z. Zhang, S. C. Kim, H. R. Lee, H. Wang, W. Huang, Y. Ye, Y. Cui, Matter 2020, 2, 1605–1620;
- 6cT.-Z. Hou, W.-T. Xu, X. Chen, H.-J. Peng, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 8178–8182; Angew. Chem. 2017, 129, 8290–8294.
- 7V. P. Nguyen, I. H. Kim, H. C. Shim, J. S. Park, J. M. Yuk, J.-H. Kim, D. Kim, S.-M. Lee, Energy Storage Mater. 2022, 46, 542–552.
- 8
- 8aX. Yan, L. Lin, Q. Chen, Q. Xie, B. Qu, L. Wang, D.-L. Peng, Carbon Energy 2021, 3, 303–329;
- 8bQ. Xiao, J. Yang, X. Wang, Y. Deng, P. Han, N. Yuan, L. Zhang, M. Feng, C.-a. Wang, R. Liu, Carbon Energy 2021, 3, 271–302.
- 9
- 9aB. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Adv. Sci. 2017, 4, 1700107;
- 9bJ. He, A. Bhargav, A. Manthiram, Adv. Energy Mater. 2022, 12, 2103204;
- 9cR. P. Fang, K. Chen, L. C. Yin, Z. H. Sun, F. Li, H. M. Cheng, Adv. Mater. 2019, 31, 1800863;
- 9dY. Shi, G. Liu, R. Jin, H. Xu, Q. Wang, S. Gao, Carbon Energy 2019, 1, 253–275.
- 10
- 10aK. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen, X. Chi, H. Lu, Z. Chen, R. Zou, T. Li, C. Jiang, Y. Chen, X. Peng, J. Lu, Adv. Mater. 2020, 32, 2002292;
- 10bY. Ma, L. Wei, Y. He, X. Yuan, Y. Su, Y. Gu, X. Li, X. Zhao, Y. Qin, Q. Mu, Y. Peng, Y. Sun, Z. Deng, Angew. Chem. Int. Ed. 2022, 61, e202116291; Angew. Chem. 2022, 134, e202116291;
- 10cX. Shan, Y. Zhong, L. Zhang, Y. Zhang, X. Xia, X. Wang, J. Tu, J. Phys. Chem. C 2021, 125, 19060–19080.
- 11J. Chang, J. Shang, Y. Sun, L. K. Ono, D. Wang, Z. Ma, Q. Huang, D. Chen, G. Liu, Y. Cui, Y. Qi, Z. Zheng, Nat. Commun. 2018, 9, 4480.
- 12S. Shen, L. Huang, X. Tong, R. Zhou, Y. Zhong, Q. Xiong, L. Zhang, X. Wang, X. Xia, J. Tu, Adv. Mater. 2021, 33, 2102796.
- 13
- 13aT. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, Z. Jin, J. Am. Chem. Soc. 2017, 139, 12710–12715;
- 13bJ. C. Ye, J. J. Chen, R. M. Yuan, D. R. Deng, M. S. Zheng, L. Cronin, Q. F. Dong, J. Am. Chem. Soc. 2018, 140, 3134–3138.
- 14
- 14aY. Zhong, X. H. Xia, S. J. Deng, J. Y. Zhan, R. Y. Fang, Y. Xia, X. L. Wang, Q. Zhang, J. P. Tu, Adv. Energy Mater. 2018, 8, 1701110;
- 14bR. Y. Fang, C. Liang, Y. Xia, Z. Xiao, H. Huang, Y. P. Gan, J. Zhang, X. Y. Tao, W. K. Zhang, J. Mater. Chem. A 2018, 6, 212–222.
- 15K. Xi, D. He, C. Harris, Y. Wang, C. Lai, H. Li, P. R. Coxon, S. Ding, C. Wang, R. V. Kumar, Adv. Sci. 2019, 6, 1800815.
- 16
- 16aX. L. Fan, Y. F. Zhang, J. Li, K. Yang, Z. X. Liang, Y. G. Chen, C. Y. Zhao, Z. S. Zhang, K. C. Mai, J. Mater. Chem. A 2018, 6, 11664–11669;
- 16bQ. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu, J. Chen, Nano Lett. 2015, 15, 721–726;
- 16cL. Huang, J. Li, B. Liu, Y. Li, S. Shen, S. Deng, C. Lu, W. Zhang, Y. Xia, G. Pan, X. Wang, Q. Xiong, X. Xia, J. Tu, Adv. Funct. Mater. 2020, 30, 1910375.
- 17
- 17aL. Li, L. Hou, J. Cheng, T. Simmons, F. Zhang, L. T. Zhang, R. J. Linhardt, N. Koratkar, Energy Storage Mater. 2018, 15, 388–395;
- 17bM. W. Xiang, H. Wu, H. Liu, J. Huang, Y. F. Zheng, L. Yang, P. Jing, Y. Zhang, S. X. Dou, H. K. Liu, Adv. Funct. Mater. 2017, 27, 1702573.
- 18T. Meng, J. Gao, J. Zhu, N. Li, M. Xu, C. M. Li, J. Jiang, J. Mater. Chem. A 2020, 8, 11976–11985.
- 19Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun, Y. Xu, X. Ren, C. Jin, P. Xu, M. Wang, C. Gao, Adv. Mater. 2016, 28, 6449–6456.
- 20C. C. Wu, X. Wang, Q. Q. Zhuo, J. Sun, C. X. Qin, J. J. Wang, L. X. Dai, Carbon 2018, 138, 292–299.
- 21Z. Li, Z. Xu, Y. Liu, R. Wang, C. Gao, Nat. Commun. 2016, 7, 13684.
- 22X. Ma, M. R. Zachariah, C. D. Zangmeister, Nano Lett. 2012, 12, 486–489.
- 23
- 23aZ. Liu, X. Zhang, C. Liu, D. Li, M. Zhang, F. Yin, G. Xin, G. Wang, J. Mater. Chem. A 2020, 8, 2777–2788;
- 23bJ. Xiang, W. Shen, Z. Guo, J. Meng, L. Yuan, Y. Zhang, Z. Cheng, Y. Shen, X. Lu, Y. Huang, Angew. Chem. Int. Ed. 2021, 60, 14313–14318; Angew. Chem. 2021, 133, 14434–14439.
- 24T. Guan, L. Shen, N. Bao, Ind. Eng. Chem. Res. 2019, 58, 17338–14345.
- 25T. X. Guan, S. Shen, Z. S. Cheng, G. Wu, N. Z. Bao, Chem. Eng. J. 2022, 440, 135878.
- 26Z. Wang, Y. Dong, H. Li, Z. Zhao, H. B. Wu, C. Hao, S. Liu, J. Qiu, X. W. Lou, Nat. Commun. 2014, 5, 5002.
- 27G. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Nat. Commun. 2015, 6, 7760.
- 28H. J. Peng, T. Z. Hou, Q. Zhang, J. Q. Huang, X. B. Cheng, M. Q. Guo, Z. Yuan, L. Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227.
- 29
- 29aL. Gai, C. Zhao, Y. Zhang, Z. Hu, Q. Shen, Carbon Energy 2022, 4, 142–154;
- 29bM. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei, J.-Q. Huang, Angew. Chem. Int. Ed. 2020, 59, 12636–12652; Angew. Chem. 2020, 132, 12736–12753.
- 30W. Li, Q. Zhang, G. Zheng, Z. W. Seh, H. Yao, Y. Cui, Nano Lett. 2013, 13, 5534–5540.