Unique Double Intramolecular and Intermolecular Exciton Coupling in Ethene-Bridged aza-BODIPY Dimers for High-Efficiency Near-Infrared Photothermal Conversion and Therapy
Xing Guo
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorJinming Yang
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
Search for more papers by this authorMao Li
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorFan Zhang
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorWeibin Bu
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorHeng Li
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorCorresponding Author
Dr. Qinghua Wu
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
Search for more papers by this authorCorresponding Author
Prof. Dengke Yin
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
Search for more papers by this authorCorresponding Author
Prof. Lijuan Jiao
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorCorresponding Author
Prof. Erhong Hao
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorXing Guo
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorJinming Yang
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
Search for more papers by this authorMao Li
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorFan Zhang
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorWeibin Bu
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorHeng Li
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorCorresponding Author
Dr. Qinghua Wu
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
Search for more papers by this authorCorresponding Author
Prof. Dengke Yin
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
Search for more papers by this authorCorresponding Author
Prof. Lijuan Jiao
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorCorresponding Author
Prof. Erhong Hao
Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 China
Search for more papers by this authorGraphical Abstract
An aza-BODIPY dimer exhibits unique double intra- and intermolecular exciton couplings, resulting in a dramatic red-shift of the absorption to the second near-infrared (NIR-II) region. Its self-assembled nanoparticles have high photothermal conversion ability and are ultra-photostable, which can efficiently lead to complete tumor ablation under 915 nm laser irradiation with ultralow power density.
Abstract
Spatial electronic communications of chromophores are both theoretically and practically fascinating. Despite intramolecular or intermolecular exciton coupling was observed in multichromophoric oligomers and J-aggregates, respectively, it is unusual that they both occur in the same molecule. Herein, ethene-bridged aza-BODIPY dimers with intramolecular exciton splitting have been developed. By encapsulating the dimer into F-127 polymer, J-type aggregated nanoparticles were produced, which showed obvious intermolecular exciton coupling and dramatically redshifted absorption and emission peaks at 936 and 1003 nm, respectively. The fabricated nanoagents have high photothermal conversion ability (η=60.3 %) and are ultra-photostable, leading to complete tumor ablation with 915 nm laser irradiation. This phototherapeutic nanoplatform through modulating both intra- and intermolecular exciton couplings is a valuable paradigm for developing photothermal agents for tumor treatment.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202211081-sup-0001-misc_information.pdf4.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Xu, R. Ye, H. Shen, J. W. Y. Lam, Z. Zhao, B. Z. Tang, Angew. Chem. Int. Ed. 2022, 61, e202204604; Angew. Chem. 2022, 134, e202204604;
- 1bY. Liu, P. Bhattarai, Z. Dai, X. Chen, Chem. Soc. Rev. 2019, 48, 2053–2108;
- 1cL. Zhao, Y. Liu, R. Xing, X. Yan, Angew. Chem. Int. Ed. 2020, 59, 3793–3801; Angew. Chem. 2020, 132, 3821–3829.
- 2
- 2aK. K. Ng, G. Zheng, Chem. Rev. 2015, 115, 11012–11042;
- 2bH. Jung, P. Verwilst, A. Sharma, J. Shin, J. Sessler, J. Kim, Chem. Soc. Rev. 2018, 47, 2280–2297;
- 2cJ. Huo, Q. Jia, H. Huang, J. Zhang, P. Li, X. Dong, W. Huang, Chem. Soc. Rev. 2021, 50, 8762–8789.
- 3
- 3aD. Wu, A. Sedgwick, T. Gunnlaugsson, E. Akkaya, J. Yoon, T. James, Chem. Soc. Rev. 2017, 46, 7105–7123;
- 3bZ. Lei, X. Li, X. Luo, H. He, J. Zheng, X. Qian, Y. Yang, Angew. Chem. Int. Ed. 2017, 56, 2979–2983; Angew. Chem. 2017, 129, 3025–3029.
- 4
- 4aJ. Mu, M. Xiao, Y. Shi, H. Li, Y. Yin, X. Chen, Angew. Chem. Int. Ed. 2022, 61, e202114722; Angew. Chem. 2022, 134, e202114722;
- 4bZ. Jiang, C. Zhang, X. Wang, M. Yan, Z. Ling, Y. Chen, Z. Liu, Angew. Chem. Int. Ed. 2021, 60, 22367–22384; Angew. Chem. 2021, 133, 22550–22558;
- 4cS. He, J. Song, J. Qu, Z. Cheng, Chem. Soc. Rev. 2018, 47, 4258–4278;
- 4dT. Sun, J. Dou, S. Liu, X. Wang, X. Zheng, X. Zheng, X. Zheng, Y. Wang, J. Pei, Z. Xie, ACS Appl. Mater. Interfaces 2018, 10, 7919–7926.
- 5
- 5aA. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891–4932;
- 5bG. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184–1201; Angew. Chem. 2008, 120, 1202–1219;
- 5cV. Nguyen, Y. Yim, S. Kim, B. Ryu, K. Swamy, G. Kim, N. Kwon, C. Kim, S. Park, J. Yoon, Angew. Chem. Int. Ed. 2020, 59, 8957–8962; Angew. Chem. 2020, 132, 9042–9047;
- 5dR. Wang, X. Gu, Q. Li, J. Gao, B. Shi, G. Xu, T. Zhu, H. Tian, C. Zhao, J. Am. Chem. Soc. 2020, 142, 15084–15090;
- 5eL. J. Patalag, S. Ahadi, O. Lashchuk, P. Jones, S. Ebbinghaus, D. Werz, Angew. Chem. Int. Ed. 2021, 60, 8766–8771; Angew. Chem. 2021, 133, 8848–8853;
- 5fL. J. Patalag, J. Hoche, R. Mitric, D. Werz, B. Feringa, Angew. Chem. Int. Ed. 2022, 61, e202116834; Angew. Chem. 2022, 134, e202116834;
- 5gJ. Miao, Y. Huo, G. Yao, Y. Feng, J. Weng, W. Zhao, W. Guo, Angew. Chem. Int. Ed. 2022, 61, e202201815; Angew. Chem. 2022, 134, e202201815.
- 6
- 6aY. Ge, D. F. O'Shea, Chem. Soc. Rev. 2016, 45, 3846–3864;
- 6bX. Zhao, J. Liu, Q. Fan, H. Chao, X. Peng, Chem. Soc. Rev. 2021, 50, 4185–4291;
- 6cV. Nguyen, Y. Yan, J. Zhao, J. Yoon, Acc. Chem. Res. 2021, 54, 207–220;
- 6dZ. Shi, X. Han, W. Hu, H. Bai, B. Peng, L. Ji, Q. Fan, L. Li, W. Huang, Chem. Soc. Rev. 2020, 49, 7533–7567.
- 7
- 7aH. Lu, J. Mack, Y. Yang, Z. Shen, Chem. Soc. Rev. 2014, 43, 4778–4823;
- 7bY. Ni, J. Wu, Org. Biomol. Chem. 2014, 12, 3774–3791;
- 7cZ. Wang, L. Huang, Y. Yan, A. EI-Zohry, A. Toffoletti, J. Zhao, A. Barbon, B. Dick, O. F. Mohammed, G. Han, Angew. Chem. Int. Ed. 2020, 59, 16114–16121; Angew. Chem. 2020, 132, 16248–16255;
- 7dJ. Wang, C. Yu, E. Hao, L. Jiao, Coord. Chem. Rev. 2022, 470, 214709.
- 8
- 8aA. Patra, L. J. Patalag, P. G. Jones, D. B. Werz, Angew. Chem. Int. Ed. 2021, 60, 747–752; Angew. Chem. 2021, 133, 758–763;
- 8bK. Teng, W. Chen, L. Niu, W. Fang, G. Cui, Q. Yang, Angew. Chem. Int. Ed. 2021, 60, 19912–19920; Angew. Chem. 2021, 133, 20065–20073;
- 8cY. Ni, S. Lee, M. Son, N. Aratani, M. Ishida, A. Samata, H. Yamada, Y. Chang, H. Furuta, D. Kim, J. Wu, Angew. Chem. Int. Ed. 2016, 55, 2815–2819; Angew. Chem. 2016, 128, 2865–2869;
- 8dZ. Zhu, X. Zhang, X. Guo, Q. Wu, Z. Li, C. Yu, E. Hao, L. Jiao, J. Zhao, Chem. Sci. 2021, 12, 14944–14951;
- 8eY. Rao, L. Xu, M. Zhou, B. Yin, A. Osuka, J. Song, Angew. Chem. Int. Ed. 2022, 61, e202206899; Angew. Chem. 2022, 134, e202206899;
- 8fQ. Wu, G. Jia, B. Tang, X. Guo, H. Wu, C. Yu, E. Hao, L. Jiao, Org. Lett. 2020, 22, 9239–9243.
- 9
- 9aC. Sun, B. Li, M. Zhao, S. Wang, Z. Lei, L. Lu, H. Zhang, L. Feng, C. Dou, D. Yin, H. Xu, Y. Cheng, F. Zhang, J. Am. Chem. Soc. 2019, 141, 19221–19225;
- 9bS. Xu, H. Liu, S. Huan, L. Yuan, X. Zhang, Mater. Chem. Front. 2021, 5, 1076–1089;
- 9cC. A. Wood, S. Han, C. S. Kim, Y. Wen, D. R. T. Sampaio, J. T. Harris, K. A. Homan, J. L. Swain, S. Y. Emelianov, A. K. Sood, J. R. Cook, K. V. Sokolov, R. R. Bouchard, Nat. Commun. 2021, 12, 5410–5423;
- 9dK. Li, X. Duan, Z. Jiang, D. Ding, Y. Chen, G.-Q. Zhang, Z. Liu, Nat. Commun. 2021, 12, 2376–2385.
- 10
- 10aF. C. Spano, Annu. Rev. Phys. Chem. 2006, 57, 217–243;
- 10bS. G. Telfer, T. M. McLean, M. R. Waterland, Dalton Trans. 2011, 40, 3097–3108;
- 10cD. Kim, A. Osuka, Acc. Chem. Res. 2004, 37, 735–745.
- 11
- 11aP. Ottiger, H. Köppelb, S. Leutwyler, Chem. Sci. 2015, 6, 6059–6068;
- 11bC. J. Bardeen, Acc. Chem. Res. 2013, 65, 127–148;
- 11cN. Berova, N. Harada, K. Nakanishi, Encycl. Spectrosc. Spectrom. 3rd ed., Academic Press, London, 2017, pp. 539–555.
- 12
- 12aM. Bröring, R. Krüger, S. Link, C. Kleeberg, S. Köhler, X. Xie, B. Ventura, L. Flamigni, Chem. Eur. J. 2008, 14, 2976–2983;
- 12bL. Patalag, L. Ho, P. Jones, D. Werz, J. Am. Chem. Soc. 2017, 139, 15104–15113;
- 12cJ. Ahrens, B. Haberlag, A. Scheja, M. Tamm, M. Bröring, Chem. Eur. J. 2014, 20, 2901–2912;
- 12dJ. Ahrens, B. Böker, K. Brandhorst, M. Funk, M. Bröring, Chem. Eur. J. 2013, 19, 11382–11395.
- 13
- 13aT. E. Kaiser, H. Wang, V. Stepanenko, F. Würthner, Angew. Chem. Int. Ed. 2007, 46, 5541–5544; Angew. Chem. 2007, 119, 5637–5640;
- 13bK. Cai, J. Xie, D. Zhao, J. Am. Chem. Soc. 2014, 136, 28–31;
- 13cW. Chen, C. Cheng, E. D. Cosco, S. Ramakrishnan, J. Lingg, O. Bruns, J. Zink, E. Sletten, J. Am. Chem. Soc. 2019, 141, 12475–12480;
- 13dY. Liu, Y. Zhang, F. Fennel, W. Wagner, F. Würthner, Y. Chen, Z. Chen, Chem. Eur. J. 2018, 24, 16388–16394;
- 13eH. Wang, Y. Zhang, Y. Chen, H. Pan, X. Ren, Z. Chen, Angew. Chem. Int. Ed. 2020, 59, 5185–5192; Angew. Chem. 2020, 132, 5223–5230.
- 14
- 14aS. Okada, H. Segawa, J. Am. Chem. Soc. 2003, 125, 2792–2796;
- 14bF. Würthner, T. E. Kaiser, C. R. Saha-Möller, Angew. Chem. Int. Ed. 2011, 50, 3376–3410; Angew. Chem. 2011, 123, 3436–3473;
- 14cW. Cao, E. M. Sletten, J. Am. Chem. Soc. 2018, 140, 2727–2730.
- 15
- 15aZ. Chen, Y. Liu, W. Wagner, V. Stepanenko, X. Ren, S. Ogi, F. Würthner, Angew. Chem. Int. Ed. 2017, 56, 5729–5733; Angew. Chem. 2017, 129, 5823–5827;
- 15bM. Cheng, K. Harmatys, D. Charron, J. Chen, G. Zheng, Angew. Chem. Int. Ed. 2019, 58, 13394–13399; Angew. Chem. 2019, 131, 13528–13533;
- 15cY. Tian, D. Yin, Q. Cheng, H. Dang, C. Teng, L. Yan, J. Mater. Chem. B 2022, 10, 1650–1662;
- 15dX. Bao, S. Zheng, L. Zhang, A. Shen, G. Zhang, S. Liu, J. Hu, Angew. Chem. Int. Ed. 2022, 61, e202207250; Angew. Chem. 2022, 134, e202207250.
- 16J. Killoran, L. Allen, J. Gallagher, W. Gallagher, D. F. O′Shea, Chem. Commun. 2002, 1862–1863.
- 17
- 17aQ. Wu, Z. Kang, Q. Gong, X. Guo, H. Wang, D. Wang, L. Jiao, E. Hao, Org. Lett. 2020, 22, 7513–7517;
- 17bQ. Wu, Y. Zhu, X. Fang, X. Hao, L. Jiao, E. Hao, W. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 47208–47219.
- 18T. E. Kaiser, V. Stepanenko, F. Würthner, J. Am. Chem. Soc. 2009, 131, 6719–6732.
- 19L. Rintoul, S. R. Harper, D. P. Arnold, Phys. Chem. Chem. Phys. 2013, 15, 18951–18964.
- 20
- 20aY. Kang, W. Chen, K. Teng, L. Wang, X. Xu, L. Niu, G. Cui, Q. Yang, CCS. Chem. 2021, https://doi.org/10.31635/ccschem.021.202101600;
- 20bH. Wen, Z. Zhang, M. Kang, H. Li, W. Xu, H. Guo, Y. Li, Y. Tan, Z. Wen, Q. Wu, J. Huang, L. Xi, K. Li, L. Wang, D. Wang a, B. Tang, Biomaterials 2021, 274, 120892–120902.
- 21T. Bruhn, G. Pescitelli, S. Jurinovich, A. Schaumlöffel, F. Witterauf, J. Ahrens, M. Bröring, G. Bringmann, Angew. Chem. Int. Ed. 2014, 53, 14592–14595; Angew. Chem. 2014, 126, 14821–14824.
- 22
- 22aX. Guo, B. Tang, Q. Wu, W. Bu, F. Zhang, C. Yu, L. Jiao, E. Hao, J. Mater. Chem. B 2022, 10, 5612–5623;
- 22bX. Guo, B. Tang, H. Wu, Q. Wu, Z. Xie, C. Yu, E. Hao, L. Jiao, Mater. Chem. Front. 2021, 5, 3664–3672.
- 23
- 23aX. Zhang, H. Wang, D. Li, M. Chen, Y. Mao, B. Du, Y. Zhuang, W. Tan, W. Huang, Y. Zhao, D. Liu, T. Wang, Macromolecules 2020, 53, 3747–3755;
- 23bL. Deng, N. Zhou, S. Tang, Y. Li, Phys. Chem. Chem. Phys. 2019, 21, 16804–16817.
- 24
- 24aF. Würthner, S. Yao, T. Debaerdemaeker, R. Wortmann, J. Am. Chem. Soc. 2002, 124, 9431–9447;
- 24bC. Evans, Q. Song, P. Bohn, J. Phys. Chem. 1993, 97, 12302–12308.
- 25C. Wang, Y. Li, X. Shi, J. Zhou, L. Zhou, S. Wei, Chem. Commun. 2018, 54, 13403–13406.
- 26Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z. Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc, E. U. Akkaya, Angew. Chem. Int. Ed. 2011, 50, 11937–11941; Angew. Chem. 2011, 123, 12143–12147.