Anion-Trap Engineering toward Remarkable Crystallographic Reorientation and Efficient Cation Migration of Zn Ion Batteries
Meijia Qiu
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong, 510632 P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Software (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Peng Sun
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong, 510632 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (lead), Formal analysis (lead), Funding acquisition (equal), Investigation (equal), Software (lead), Visualization (supporting), Writing - original draft (lead)
Search for more papers by this authorDr. Yu Wang
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 P. R. China
Contribution: Formal analysis (equal), Visualization (equal), Writing - original draft (equal)
Search for more papers by this authorDr. Liang Ma
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong, 510632 P. R. China
Contribution: Formal analysis (supporting), Software (equal)
Search for more papers by this authorCorresponding Author
Prof. Chunyi Zhi
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 P. R. China
Contribution: Formal analysis (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Wenjie Mai
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong, 510632 P. R. China
Contribution: Formal analysis (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorMeijia Qiu
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong, 510632 P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Software (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Peng Sun
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong, 510632 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (lead), Formal analysis (lead), Funding acquisition (equal), Investigation (equal), Software (lead), Visualization (supporting), Writing - original draft (lead)
Search for more papers by this authorDr. Yu Wang
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 P. R. China
Contribution: Formal analysis (equal), Visualization (equal), Writing - original draft (equal)
Search for more papers by this authorDr. Liang Ma
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong, 510632 P. R. China
Contribution: Formal analysis (supporting), Software (equal)
Search for more papers by this authorCorresponding Author
Prof. Chunyi Zhi
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 P. R. China
Contribution: Formal analysis (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Wenjie Mai
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong, 510632 P. R. China
Contribution: Formal analysis (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
Abstract
Zn batteries are considered as potential candidates in future power sources, however suffer problems of rampant dendrite/by-product on Zn anodes, torpid Zn2+ transfer/diffusion and poor energy density. Inspired by the host-guest interaction chemistry, an anion-trap agent β-cyclodextrin (β-CD) is introduced into the Zn(ClO4)2 electrolyte to induce dominant Zn (002) deposition and improve Zn2+ migration behaviors. The anion ClO4− is revealed to be trapped inside the cavity of β-CD, impairing barriers for Zn2+ migration and significantly elevating the Zn2+ transference number to 0.878. Meanwhile, the β-CD@ClO4− complex shows the function in preferential growth of the Zn (002), blocking the approach of dendrite growth. Above combined functions lead to substantial enhancement in long-term stability and cell capacity, as proved by 10 times longer life of Zn||Zn symmetric cells and 57 % capacity increasement of Zn-MnO2 full cells (at 0.1 A g−1) compared with that of pure Zn(ClO4)2 electrolyte.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202210979-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec, S. Z. Qiao, Sci. Adv. 2020, 6, eaba4098.
- 2M. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564.
- 3P. Ruan, S. Liang, B. Lu, H. J. Fan, J. Zhou, Angew. Chem. Int. Ed. 2022, 61, e202200598; Angew. Chem. 2022, 134, e202200598.
- 4Z. Pan, X. Liu, J. Yang, X. Li, Z. Liu, X. J. Loh, J. Wang, Adv. Energy Mater. 2021, 11, 2100608.
- 5Z. Pan, J. Yang, J. Yang, Q. Zhang, H. Zhang, X. Li, Z. Kou, Y. Zhang, H. Chen, C. Yan, J. Wang, ACS Nano 2020, 14, 842–853.
- 6Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo, X. Li, Y. Tang, H. Li, B. Dong, C. Zhi, Adv. Mater. 2020, 32, 2001854.
- 7X. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Energy Storage Mater. 2019, 20, 410–437.
- 8J. Hao, X. Li, X. Zeng, D. Li, J. Mao, Z. Guo, Energy Environ. Sci. 2020, 13, 3917–3949.
- 9M. Qiu, L. Ma, P. Sun, Z. Wang, G. Cui, W. Mai, Nano-Micro Lett. 2022, 14, 31.
- 10P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Angew. Chem. Int. Ed. 2021, 60, 18247–18255; Angew. Chem. 2021, 133, 18395–18403.
- 11Y. Zhao, Y. Lu, H. Li, Y. Zhu, Y. Meng, N. Li, D. Wang, F. Jiang, F. Mo, C. Long, Y. Guo, X. Li, Z. Huang, Q. Li, J. C. Ho, J. Fan, M. Sui, F. Chen, W. Zhu, W. Liu, C. Zhi, Nat. Commun. 2022, 13, 752.
- 12M. Qiu, P. Sun, A. Qin, G. Cui, W. Mai, Energy Storage Mater. 2022, 49, 463–470.
- 13H. Li, C. Guo, T. Zhang, P. Xue, R. Zhao, W. Zhou, W. Li, A. Elzatahry, D. Zhao, D. Chao, Nano Lett. 2022, 22, 4223–4231.
- 14J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao, L. Li, R. Chen, Adv. Mater. 2022, 34, 2106897.
- 15Q. Li, D. Wang, B. Yan, Y. Zhao, J. Fan, C. Zhi, Angew. Chem. Int. Ed. 2022, 61, e202202780; Angew. Chem. 2022, 134, e202202780.
- 16L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X. Q. Yang, K. Xu, O. Borodin, C. Wang, Nat. Nanotechnol. 2021, 16, 902–910.
- 17D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao, Y. Guo, Z. Zhang, S. Wu, L. Yin, Z. Weng, F. Kang, Q.-H. Yang, Nat. Sustainability 2022, 5, 205–213.
- 18F. Ming, Y. Zhu, G. Huang, A. H. Emwas, H. Liang, Y. Cui, H. N. Alshareef, J. Am. Chem. Soc. 2022, 144, 7160–7170.
- 19Z. Pan, Q. Cao, W. Gong, J. Yang, Y. Gao, Y. Gao, J. Pu, J. Sun, X. J. Loh, Z. Liu, C. Guan, J. Wang, Energy Storage Mater. 2022, 50, 435–443.
- 20Q. Zhang, K. Xia, Y. Ma, Y. Lu, L. Li, J. Liang, S. Chou, J. Chen, ACS Energy Lett. 2021, 6, 2704–2712.
- 21L. Ma, J. Li, T. Wu, P. Sun, S. Tan, H. Wang, W. Xie, L. Pan, Y. Yamauchi, W. Mai, Nano Energy 2021, 87, 106150.
- 22Q. Ma, H. Zhang, C. Zhou, L. Zheng, P. Cheng, J. Nie, W. Feng, Y. S. Hu, H. Li, X. Huang, L. Chen, M. Armand, Z. Zhou, Angew. Chem. Int. Ed. 2016, 55, 2521–2525; Angew. Chem. 2016, 128, 2567–2571.
- 23D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua, E. T. J. Jie, Y. Cai, E. Edison, W. J. Manalastas, M. W. Wong, M. Srinivasan, Angew. Chem. Int. Ed. 2021, 60, 7213–7219; Angew. Chem. 2021, 133, 7289–7295.
- 24J. Chazalviel, Phys. Rev. A 1990, 42, 7355–7367.
- 25S. Chen, F. Feng, Y. Yin, X. Lizo, Z. Ma, Energy Storage Mater. 2019, 22, 57–65.
- 26M. D. Tikekar, L. A. Archer, D. L. Koch, J. Electrochem. Soc. 2014, 161, A847–A855.
- 27C. Z. Zhao, X. Q. Zhang, X. B. Cheng, R. Zhang, R. Xu, P. Y. Chen, H. J. Peng, J. Q. Huang, Q. Zhang, Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074.
- 28Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang, Q. Zhao, J. Liu, F. Pan, Nano Energy 2019, 56, 92–99.
- 29W. Zhang, Q. Zhao, Y. Hou, Z. Shen, L. Fan, S. Zhou, Y. Lu, L. A. Archer, Sci. Adv. 2021, 7, eabl3752.
- 30J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez, Q. Zhao, L. A. Archer, Adv. Mater. 2021, 33, 2106867.
- 31J. Zheng, J. Yin, D. Zhang, G. Li, D. C. Bock, T. Tang, Q. Zhao, X. Liu, A. Warren, Y. Deng, S. Jin, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, C. D. Rahn, L. A. Archer, Sci. Adv. 2020, 6, eabb1122.
- 32J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645–648.
- 33J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang, X. Zhang, J. Qin, Z. S. Wu, Adv. Energy Mater. 2021, 11, 2101299.
- 34M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, G. Fang, J. Zhou, S. Liang, Adv. Mater. 2021, 33, 2100187.
- 35A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling, W. R. Dichtel, Nature 2016, 529, 190–194.
- 36L. Sévery, J. Szczerbinski, M. Taskin, I. Tuncay, F. Brandalise Nunes, C. Cignarella, G. Tocci, O. Blacque, J. Osterwalder, R. Zenobi, M. Iannuzzi, S. D. Tilley, Nat. Chem. 2021, 13, 523–529.
- 37C. Lefebvre, G. Rubez, H. Khartabil, J. C. Boisson, J. Contreras-Garcia, E. Henon, Phys. Chem. Chem. Phys. 2017, 19, 17928–17936.
- 38C. Y. Chan, Z. Wang, Y. Li, H. Yu, B. Fei, J. H. Xin, ACS Appl. Mater. Interfaces 2021, 13, 30594–30602.