Unraveling the Complex Chirality Evolution in DNA-Assembled High-Order, Hybrid Chiroplasmonic Superstructures from Multi-Scale Chirality Mechanisms
Yongqing Yuan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
These authors contributed equally to this work.
Search for more papers by this authorHuacheng Li
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
These authors contributed equally to this work.
Search for more papers by this authorHao Yang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCong Han
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorProf. Huatian Hu
Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205 China
Search for more papers by this authorProf. Dr. Alexander O. Govorov
Department of Physics and Astronomy and the Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, OH 45701 USA
Search for more papers by this authorProf. Hao Yan
Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287 USA
Search for more papers by this authorCorresponding Author
Prof. Xiang Lan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorYongqing Yuan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
These authors contributed equally to this work.
Search for more papers by this authorHuacheng Li
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
These authors contributed equally to this work.
Search for more papers by this authorHao Yang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCong Han
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorProf. Huatian Hu
Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205 China
Search for more papers by this authorProf. Dr. Alexander O. Govorov
Department of Physics and Astronomy and the Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, OH 45701 USA
Search for more papers by this authorProf. Hao Yan
Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287 USA
Search for more papers by this authorCorresponding Author
Prof. Xiang Lan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorGraphical Abstract
Multi-scale chirality evolution was observed from DNA-assembled hybrid chiroplasmonic superstructures comprised of metal nanoparticles and organic chromophores, as a result of distinct fundamental chiral interactions at different hierarchical levels. The findings present new challenges to current theoretical frameworks to describe chiral hybrid systems, and will motivate computational and theoretical advances.
Abstract
Hierarchical, chiral hybrid superstructures of chromophores and nanoparticles are expected to give rise to intriguing unveiled chiroptical responses originating from the complex chiral interactions among the components. Herein, DNA origami cavity that could self-assemble into one-dimensional (1D) DNA tubes was employed as a scaffold to accurately organize metal nanoparticles and chromophores. The chiral interactions were studied at the level of individual hybrid particles and their 1D hybrid superstructures. Complex chirality mechanisms involving global structural chirality, plasmon-induced circular dichroism (PICD) and exciton-coupled circular dichroism (ECCD) were disentangled. The multiplexed CD spectrum superposition revealed the chirality evolution at different length scales. These results can offer a model for boosting the theoretical understanding of classical-quantum hybrid systems, and would inspire the future design of optically-active substances across length scales.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202210730-sup-0001-misc_information.pdf14.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Ai, Y. Yang, B. Wang, J. Chang, Z. Tang, B. Yang, S. Lu, Sci. Bull. 2021, 66, 839–856.
- 2H. Li, W. Ali, Z. Wang, M. F. Mideksa, F. Wang, X. Wang, L. Wang, Z. Tang, Nano Energy 2019, 63, 103873.
- 3H. Zheng, W. Li, W. Li, X. Wang, Z. Tang, S. X. A. Zhang, Y. Xu, Adv. Mater. 2018, 30, 1705948.
- 4N. A. Kotov, L. M. Liz-Marzán, P. S. Weiss, ACS Nano 2021, 15, 12457–12460.
- 5J. Ahn, S. Ma, J.-Y. Kim, J. Kyhm, W. Yang, J. A. Lim, N. A. Kotov, J. Moon, J. Am. Chem. Soc. 2020, 142, 4206–4212.
- 6Y. Kim, B. Yeom, O. Arteaga, S. J. Yoo, S.-G. Lee, J.-G. Kim, N. A. Kotov, Nat. Mater. 2016, 15, 461–468.
- 7P. García-García, A. Zagdoun, C. Copéret, A. Lesage, U. Diaz, A. Corma, Chem. Sci. 2013, 4, 2006–2012.
- 8S. Xiang, Y. Zhang, Q. Xin, C. Li, Angew. Chem. Int. Ed. 2002, 41, 821–824;
10.1002/1521-3773(20020301)41:5<821::AID-ANIE821>3.0.CO;2-A CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 849–852.
- 9P. Zhan, Z.-G. Wang, N. Li, B. Ding, ACS Catal. 2015, 5, 1489–1498.
- 10R. Iwaura, M. Ohnishi-Kameyama, T. Iizawa, Chem. Eur. J. 2009, 15, 3729–3735.
- 11X. Lan, X. Lu, C. Shen, Y. Ke, W. Ni, Q. Wang, J. Am. Chem. Soc. 2015, 137, 457–462.
- 12K. C. Hannah, B. A. Armitage, Acc. Chem. Res. 2004, 37, 845–853.
- 13A. Scalabre, A. M. Gutierrez-Vilchez, A. Sastre-Santos, F. Fernández-Lázaro, D. M. Bassani, R. Oda, J. Phys. Chem. C 2020, 124, 23839–23843.
- 14T. Goto, Y. Okazaki, M. Ueki, Y. Kuwahara, M. Takafuji, R. Oda, H. Ihara, Angew. Chem. Int. Ed. 2017, 56, 2989–2993; Angew. Chem. 2017, 129, 3035–3039.
- 15T. Mizutani, H. Takagi, O. Hara, T. Horiguchi, H. Ogoshi, Tetrahedron Lett. 1997, 38, 1991–1994.
- 16Y. Kikuchi, K. Kobayashi, Y. Aoyama, J. Am. Chem. Soc. 1992, 114, 1351–1358.
- 17X. Zhou, S. Mandal, S. Jiang, S. Lin, J. Yang, Y. Liu, D. G. Whitten, N. W. Woodbury, H. Yan, J. Am. Chem. Soc. 2019, 141, 8473–8481.
- 18É. Boulais, N. P. D. Sawaya, R. Veneziano, A. Andreoni, J. L. Banal, T. Kondo, S. Mandal, S. Lin, G. S. Schlau-Cohen, N. W. Woodbury, H. Yan, A. Aspuru-Guzik, M. Bathe, Nat. Mater. 2018, 17, 159–166.
- 19B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, Nano Lett. 2013, 13, 1203–1209.
- 20Y. Tian, T. Wang, W. Liu, H. L. Xin, H. Li, Y. Ke, W. M. Shih, O. Gang, Nat. Nanotechnol. 2015, 10, 637–644.
- 21W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, N. A. Kotov, Chem. Rev. 2017, 117, 8041–8093.
- 22W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, N. A. Kotov, Nat. Commun. 2013, 4, 2689.
- 23W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, J. Am. Chem. Soc. 2012, 134, 15114–15121.
- 24G. Chen, K. J. Gibson, D. Liu, H. C. Rees, J.-H. Lee, W. Xia, R. Lin, H. L. Xin, O. Gang, Y. Weizmann, Nat. Mater. 2019, 18, 169–174.
- 25M. J. Urban, C. Shen, X.-T. Kong, C. Zhu, A. O. Govorov, Q. Wang, M. Hentschel, N. Liu, Annu. Rev. Phys. Chem. 2019, 70, 275–299.
- 26A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, Nature 2012, 483, 311–314.
- 27N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, M. Kadodwala, Nano Lett. 2012, 12, 977–983.
- 28B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, J. Am. Chem. Soc. 2012, 134, 17807–17813.
- 29G. Shemer, O. Krichevski, G. Markovich, T. Molotsky, I. Lubitz, A. B. Kotlyar, J. Am. Chem. Soc. 2006, 128, 11006–11007.
- 30K. C. Peters, S. Mekala, R. A. Gross, K. D. Singer, J. Mater. Chem. C 2020, 8, 4675–4679.
- 31X. Lan, X. Zhou, L. A. McCarthy, A. O. Govorov, Y. Liu, S. Link, J. Am. Chem. Soc. 2019, 141, 19336–19341.
- 32M. Han, S. J. Cho, Y. Norikane, M. Shimizu, T. Seki, Chem. Eur. J. 2016, 22, 3971–3975.
- 33Y. N. Teo, E. T. Kool, Chem. Rev. 2012, 112, 4221–4245.
- 34H. Asanuma, T. Fujii, T. Kato, H. Kashida, J. Photochem. Photobiol. C 2012, 13, 124–135.
- 35V. L. Malinovskii, D. Wenger, R. Häner, Chem. Soc. Rev. 2010, 39, 410–422.
- 36R. Varghese, H.-A. Wagenknecht, Chem. Commun. 2009, 2615–2624.
- 37Q. Zhang, T. Hernandez, K. W. Smith, S. A. H. Jebeli, A. X. Dai, L. Warning, R. Baiyasi, L. A. McCarthy, H. Guo, D.-H. Chen, J. A. Dionne, C. F. Landes, S. Link, Science 2019, 365, 1475–1478.
- 38X. Lan, Z. Su, Y. Zhou, T. Meyer, Y. Ke, Q. Wang, W. Chiu, N. Liu, S. Zou, H. Yan, Angew. Chem. Int. Ed. 2017, 56, 14632–14636; Angew. Chem. 2017, 129, 14824–14828.
- 39Q. Jiang, Q. Liu, Y. Shi, Z.-G. Wang, P. Zhan, J. Liu, C. Liu, H. Wang, X. Shi, L. Zhang, Nano Lett. 2017, 17, 7125–7130.
- 40F. Qin, W. Shi, T. Ideue, M. Yoshida, A. Zak, R. Tenne, T. Kikitsu, D. Inoue, D. Hashizume, Y. Iwasa, Nat. Commun. 2017, 8, 14465.
- 41X. Gao, X. Zhang, K. Deng, B. Han, L. Zhao, M. Wu, L. Shi, J. Lv, Z. Tang, J. Am. Chem. Soc. 2017, 139, 8734–8739.
- 42Z. Lin, H. Emamy, B. Minevich, Y. Xiong, S. Xiang, S. Kumar, Y. Ke, O. Gang, J. Am. Chem. Soc. 2020, 142, 17531–17542.
- 43C. Zhou, X. Duan, N. Liu, Acc. Chem. Res. 2017, 50, 2906–2914.
- 44M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, Nano Lett. 2012, 12, 2542–2547.
- 45D. Smith, V. Schüller, C. Engst, J. Rädler, T. Liedl, Nanomedicine 2013, 8, 105–121.
- 46F. Hong, F. Zhang, Y. Liu, H. Yan, Chem. Rev. 2017, 117, 12584–12640.
- 47H. Jiang, L. Zhang, J. Chen, M. Liu, ACS Nano 2017, 11, 12453–12460.
- 48M. Hentschel, M. Schäferling, X. Duan, H. Giessen, N. Liu, Sci. Adv. 2017, 3, e1602735.
- 49L. Zhang, T. Wang, Z. Shen, M. Liu, Adv. Mater. 2016, 28, 1044–1059.
- 50Y. Zhang, P. Chen, M. Liu, Chem. Eur. J. 2008, 14, 1793–1803.
- 51X. Lan, Q. Wang, Adv. Mater. 2016, 28, 10499–10507.
- 52S. A. Jensen, E. S. Day, C. H. Ko, L. A. Hurley, J. P. Luciano, F. M. Kouri, T. J. Merkel, A. J. Luthi, P. C. Patel, J. I. Cutler, W. L. Daniel, A. W. Scott, M. W. Rotz, T. J. Meade, D. A. Giljohann, C. A. Mirkin, A. H. Stegh, Sci. Transl. Med. 2013, 5, 209ra152.
- 53M. Wang, G. L. Silva, B. A. Armitage, J. Am. Chem. Soc. 2000, 122, 9977–9986.
- 54A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, Nano Lett. 2010, 10, 1374–1382.
- 55E. Severoni, S. Maniappan, L. M. Liz-Marzán, J. Kumar, F. J. García de Abajo, L. Galantini, ACS Nano 2020, 14, 16712–16722.
- 56K. Martens, F. Binkowski, L. Nguyen, L. Hu, A. O. Govorov, S. Burger, T. Liedl, Nat. Commun. 2021, 12, 2025.
- 57V. Kravtsov, S. Berweger, J. M. Atkin, M. B. Raschke, Nano Lett. 2014, 14, 5270–5275.
- 58H. Dietz, S. M. Douglas, W. M. Shih, Science 2009, 325, 725–730.
- 59J. Fregoni, T. S. Haugland, S. Pipolo, T. Giovannini, H. Koch, S. Corni, Nano Lett. 2021, 21, 6664–6670.
- 60A. Babaze, R. Esteban, A. G. Borisov, J. Aizpurua, Nano Lett. 2021, 21, 8466–8473.
- 61A. O. Govorov, Z. Fan, ChemPhysChem 2012, 13, 2551–2560.
- 62J. M. Slocik, A. O. Govorov, R. R. Naik, Nano Lett. 2011, 11, 701–705.
- 63M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, G. Markovich, J. Phys. Chem. C 2013, 117, 22240–22244.
- 64B. Zhang, Y. Zhao, W. Liang, J. Phys. Chem. C 2021, 125, 1654–1664.