Piezo-Photocatalytic Synergy in BiFeO3@COF Z-Scheme Heterostructures for High-Efficiency Overall Water Splitting
Dr. Mei-Ling Xu
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorMeng Lu
School of Chemistry, South China Normal University, Guangzhou, 510006 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGuan-Ying Qin
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorXiu-Mei Wu
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorTing Yu
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorProf. Li-Na Zhang
Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Kui Li
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xin Cheng
Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ya-Qian Lan
School of Chemistry, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorDr. Mei-Ling Xu
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorMeng Lu
School of Chemistry, South China Normal University, Guangzhou, 510006 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGuan-Ying Qin
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorXiu-Mei Wu
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorTing Yu
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorProf. Li-Na Zhang
Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Kui Li
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xin Cheng
Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ya-Qian Lan
School of Chemistry, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorGraphical Abstract
We combined covalent organic frameworks (COFs) and piezoelectric material by covalent bonds to form a Z-scheme core@shell heterostructure piezo-photocatalyst with tunable shell thickness for overall water splitting. The optimal sample reveals the unprecedented H2 and O2 production rates of 1416.4 and 708.2 μmol h−1 g−1 under the excitation of ultrasonication coupled with visible light irradiation.
Abstract
Solar-driven overall water splitting is an ideal way to generate renewable energy while still challenging. For the first time, this work combined covalent organic frameworks (COFs) and piezoelectric material by covalent linkages to form Z-scheme core@shell heterostructure for overall water splitting. Benefiting from the synergistic effect between the polarized electric field and photo-generated charges, as well as the precise adjustment of shell thickness, the carrier separation and utilization efficiency is greatly improved. The optimal BiFeO3@TpPa-1-COF photocatalyst revealed hydrogen (H2) and oxygen (O2) production rates of 1416.4 and 708.2 μmol h−1 g−1 under the excitation of ultrasonication coupled with light irradiation, which is the best performance among various piezo- and COF-based photocatalysts. This provides a new sight for the practical application of highly efficient photocatalytic overall water splitting.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202210700-sup-0001-misc_information.pdf4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Ling, H. Wang, M. Liu, B. Wang, S. Li, X. Zhu, Y. Shi, H. Xia, K. Guo, Y. Hao, H. Jin, Energy Environ. Sci. 2022, 15, 1861–1871;
- 1bS. Chen, T. Takata, K. Domen, Nat. Rev. Mater. 2017, 2, 17050;
- 1cH. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature 2021, 598, 304–307.
- 2
- 2aX. Chen, J. Wang, Y. Chai, Z. Zhang, Y. Zhu, Adv. Mater. 2021, 33, 2007479;
- 2bF. Honda, Nature 1972, 238, 37–38.
- 3
- 3aA. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 2019, 31, 1807660;
- 3bQ. Wang, K. Domen, Chem. Rev. 2020, 120, 919–985;
- 3cK. Li, M. Han, R. Chen, S.-L. Li, S.-L. Xie, C. Mao, X. Bu, X.-L. Cao, L.-Z. Dong, P. Feng, Y.-Q. Lan, Adv. Mater. 2016, 28, 8906–8911.
- 4
- 4aQ. Wang, M. Nakabayashi, T. Hisatomi, S. Sun, S. Akiyama, Z. Wang, Z. Pan, X. Xiao, T. Watanabe, T. Yamada, N. Shibata, T. Takata, K. Domen, Nat. Mater. 2019, 18, 827–832;
- 4bB. Ma, Y. Dang, D. Li, X. Wang, K. Lin, W. Wang, X. Zhou, Y. Chen, T. Xie, X. Zhang, H. Han, Appl. Catal. B 2021, 298, 120491;
- 4cD. Dai, X. Liang, B. Zhang, Y. Wang, Q. Wu, X. Bao, Z. Wang, Z. Zheng, H. Cheng, Y. Dai, B. Huang, P. Wang, Adv. Sci. 2022, 9, 2105299.
- 5D. Dai, P. Wang, X. Bao, Y. Xu, Z. Wang, Y. Guo, Z. Wang, Z. Zheng, Y. Liu, H. Cheng, B. Huang, Chem. Eng. J. 2022, 433, 134476.
- 6
- 6aH. Wang, Y. Yang, X. Yuan, W. Liang Teo, Y. Wu, L. Tang, Y. Zhao, Mater. Today 2022, 53, 106–133;
- 6bS. D. Diwakara, W. S. Y. Ong, Y. H. Wijesundara, R. L. Gearhart, F. C. Herbert, S. G. Fisher, G. T. McCandless, S. B. Alahakoon, J. J. Gassensmith, S. C. Dodani, R. A. Smaldone, J. Am. Chem. Soc. 2022, 144, 2468–2473.
- 7
- 7aY. Wan, L. Wang, H. Xu, X. Wu, J. Yang, J. Am. Chem. Soc. 2020, 142, 4508–4516;
- 7bY. Li, M. Karimi, Y.-N. Gong, N. Dai, V. Safarifard, H.-L. Jiang, Matter 2021, 4, 2230–2265;
- 7cY. Fu, Y. Wu, S. Chen, W. Zhang, Y. Zhang, T. Yan, B. Yang, H. Ma, ACS Nano 2021, 15, 19743–19755.
- 8
- 8aH. Ma, M. Wei, F. Jin, T. Chen, Y. Ma, J. Phys. Chem. C 2019, 123, 24626–24633;
- 8bC.-F. Fu, C. Zhao, Q. Zheng, X. Li, J. Zhao, J. Yang, Sci. China Chem. 2020, 63, 1134–1141.
- 9
- 9aP. Dong, Y. Wang, A. Zhang, T. Cheng, X. Xi, J. Zhang, ACS Catal. 2021, 11, 13266–13279;
- 9bC.-C. Li, M.-Y. Gao, X.-J. Sun, H.-L. Tang, H. Dong, F.-M. Zhang, Appl. Catal. B 2020, 266, 118586.
- 10M.-Y. Gao, C.-C. Li, H.-L. Tang, X.-J. Sun, H. Dong, F.-M. Zhang, J. Mater. Chem. A 2019, 7, 20193–20200.
- 11Y.-P. Zhang, H.-L. Tang, H. Dong, M.-Y. Gao, C.-C. Li, X.-J. Sun, J.-Z. Wei, Y. Qu, Z.-J. Li, F.-M. Zhang, J. Mater. Chem. A 2020, 8, 4334–4340.
- 12C. Li, G. Yu, Small 2021, 17, 2100918.
- 13
- 13aM. K. Mohanta, A. De Sarkar, Nanoscale 2020, 12, 22645–22657;
- 13bP. C. Sherrell, M. Fronzi, N. A. Shepelin, A. Corletto, D. A. Winkler, M. Ford, J. G. Shapter, A. V. Ellis, Chem. Soc. Rev. 2022, 51, 650–671.
- 14
- 14aC. Zhang, D. Lei, C. Xie, X. Hang, C. He, H.-L. Jiang, Adv. Mater. 2021, 33, 2106308;
- 14bZ. Jiang, X. Tan, Y. Huang, Sci. Total Environ. 2022, 806, 150924;
- 14cS. Tu, Y. Guo, Y. Zhang, C. Hu, T. Zhang, T. Ma, H. Huang, Adv. Funct. Mater. 2020, 30, 2005158.
- 15K. Wang, Z. Fang, X. Huang, W. Feng, Y. Wang, B. Wang, P. Liu, Chem. Commun. 2017, 53, 9765–9768.
- 16
- 16aH. You, Z. Wu, L. Zhang, Y. Ying, Y. Liu, L. Fei, X. Chen, Y. Jia, Y. Wang, F. Wang, S. Ju, J. Qiao, C.-H. Lam, H. Huang, Angew. Chem. Int. Ed. 2019, 58, 11779–11784; Angew. Chem. 2019, 131, 11905–11910;
- 16bY.-L. Liu, J. M. Wu, Nano Energy 2019, 56, 74–81.
- 17
- 17aX. Zhou, F. Yan, S. Wu, B. Shen, H. Zeng, J. Zhai, Small 2020, 16, 2001573;
- 17bS. L. Guo, S. N. Lai, J. M. Wu, ACS Nano 2021, 15, 16106–16117.
- 18S. Jia, Y. Su, B. Zhang, Z. Zhao, S. Li, Y. Zhang, P. Li, M. Xu, R. Ren, Nanoscale 2019, 11, 7690–7700.
- 19Y. Feng, L. Ling, Y. Wang, Z. Xu, F. Cao, H. Li, Z. Bian, Nano Energy 2017, 40, 481–486.
- 20Y. J. Chung, C. S. Yang, J. T. Lee, G. H. Wu, J. M. Wu, Adv. Energy Mater. 2020, 10, 2002082.
- 21H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z. L. Wang, Nano Lett. 2015, 15, 2372–2379.
- 22X. Zhou, S. Wu, C. Li, F. Yan, H. Bai, B. Shen, H. Zeng, J. Zhai, Nano Energy 2019, 66, 104127.
- 23H. You, Z. Wu, L. Zhang, Y. Ying, Y. Liu, L. Fei, X. Chen, Y. Jia, Y. Wang, F. Wang, S. Ju, J. Qiao, C. H. Lam, H. Huang, Angew. Chem. Int. Ed. 2019, 58, 11779–11784; Angew. Chem. 2019, 131, 11905–11910.
- 24J. Yin, G. Liao, J. Zhou, C. Huang, Y. Ling, P. Lu, L. Li, Sep. Purif. Technol. 2016, 168, 134–140.
- 25S. Hong, K. L. Shuford, S. Park, Chem. Mater. 2011, 23, 2011–2013.
- 26A. Razmjou, J. Mansouri, V. Chen, J. Membr. Sci. 2011, 378, 73–84.
- 27Y. Wang, X. Wen, Y. Jia, M. Huang, F. Wang, X. Zhang, Y. Bai, G. Yuan, Y. Wang, Nat. Commun. 2020, 11, 1328.
- 28
- 28aR. Su, H. A. Hsain, M. Wu, D. Zhang, X. Hu, Z. Wang, X. Wang, F.-T. Li, X. Chen, L. Zhu, Y. Yang, Y. Yang, X. Lou, S. J. Pennycook, Angew. Chem. Int. Ed. 2019, 58, 15076–15081; Angew. Chem. 2019, 131, 15220–15225;
- 28bW. Feng, J. Yuan, L. Zhang, W. Hu, Z. Wu, X. Wang, X. Huang, P. Liu, S. Zhang, Appl. Catal. B 2020, 277, 119250;
- 28cR. Su, Z. Wang, L. Zhu, Y. Pan, D. Zhang, H. Wen, Z.-D. Luo, L. Li, F.-T. Li, M. Wu, L. He, P. Sharma, J. Seidel, Angew. Chem. Int. Ed. 2021, 60, 16019–16026; Angew. Chem. 2021, 133, 16155–16162.
- 29
- 29aL. Wang, Y. Wan, Y. Ding, S. Wu, Y. Zhang, X. Zhang, G. Zhang, Y. Xiong, X. Wu, J. Yang, H. Xu, Adv. Mater. 2017, 29, 1702428;
- 29bF. Guo, W. Shi, C. Zhu, H. Li, Z. Kang, Appl. Catal. B 2018, 226, 412–420;
- 29cD. Qu, J. Liu, X. Miao, M. Han, H. Zhang, Z. Cui, S. Sun, Z. Kang, H. Fan, Z. Sun, Appl. Catal. B 2018, 227, 418–424;
- 29dF. Xue, Y. Si, M. Wang, M. Liu, L. Guo, Nano Energy 2019, 62, 823–831;
- 29eC. Wang, H. Zhang, W. Luo, T. Sun, Y. Xu, Angew. Chem. Int. Ed. 2021, 60, 25381–25390; Angew. Chem. 2021, 133, 25585–25594;
- 29fS. Zhang, G. Cheng, L. Guo, N. Wang, B. Tan, S. Jin, Angew. Chem. Int. Ed. 2020, 59, 6007–6014; Angew. Chem. 2020, 132, 6063–6070;
- 29gD. Kong, J. Xie, Z. Guo, D. Yang, J. Tang, ChemCatChem 2020, 12, 2708–2712;
- 29hL. Lin, C. Wang, W. Ren, H. Ou, Y. Zhang, X. Wang, Chem. Sci. 2017, 8, 5506–5511;
- 29iD. Zheng, X. N. Cao, X. Wang, Angew. Chem. Int. Ed. 2016, 55, 11512–11516; Angew. Chem. 2016, 128, 11684–11688;
- 29jZ. Pan, Y. Zheng, F. Guo, P. Niu, X. Wang, ChemSusChem 2017, 10, 87–90;
- 29kX. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M.-T. F. Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, P. M. Ajayan, Adv. Energy Mater. 2017, 7, 1700025;
- 29lW. Che, W. Cheng, T. Yao, F. Tang, W. Liu, H. Su, Y. Huang, Q. Liu, J. Liu, F. Hu, Z. Pan, Z. Sun, S. Wei, J. Am. Chem. Soc. 2017, 139, 3021–3026;
- 29mT. Song, P. Zhang, T. Wang, A. Ali, H. Zeng, Appl. Catal. B 2018, 224, 877–885;
- 29nX. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Nano Energy 2019, 59, 644–650;
- 29oY. Xiong, Y. Chen, N. Yang, C. Jin, Q. Sun, Solar RRL 2019, 3, 1800341.
- 30
- 30aM. K. Mohanta, A. Rawat, Dimple, N. Jena, R. Ahammed, A. De Sarkar, Nanoscale 2019, 11, 21880–21890;
- 30bS. Yuan, W. F. Io, J. Mao, Y. Chen, X. Luo, J. Hao, ACS Appl. Nano Mater. 2020, 3, 11979–11986.
- 31A. B. Puthirath, X. Zhang, A. Krishnamoorthy, R. Xu, F. S. Samghabadi, D. C. Moore, J. Lai, T. Zhang, D. E. Sanchez, F. Zhang, N. R. Glavin, D. Litvinov, R. Vajtai, V. Swaminathan, M. Terrones, H. Zhu, P. Vashishta, P. M. Ajayan, Adv. Mater. 2022, 34, 2206425.
- 32G. Yasin, S. Ibraheem, S. Ali, M. Arif, S. Ibrahim, R. Iqbal, A. Kumar, M. Tabish, M. A. Mushtaq, A. Saad, H. Xu, W. Zhao, Mater. Today 2022, 23, 100634.
- 33M. K. Mohanta, A. Rawat, N. Jena, Dimple, R. Ahammed, A. De Sarkar, ACS Appl. Mater. Interfaces 2020, 12, 3114–3126.