Morphological Anisotropy in Metal–Organic Framework Micro/Nanostructures
Tong Bao
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorYingying Zou
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorChaoqi Zhang
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chengzhong Yu
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Chao Liu
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorTong Bao
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorYingying Zou
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorChaoqi Zhang
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chengzhong Yu
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Chao Liu
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
Anisotropy plays a unique role in the structural regulation of metal–organic frameworks (MOFs) and their composites, especially at the micro- and nanoscale. However, there is a lack of a understanding of MOF micro/nanoparticles (MNPs) from the perspective of morphological anisotropy. In this Minireview, recent advances in anisotropic MOF MNPs are summarized, with a focus on how morphological anisotropy leads to innovative structures and modulates properties. First, anisotropic pristine MOF MNPs with diverse morphologies are introduced and classified by their morphology-dependent and morphology-independent anisotropy. Secondly, the anisotropy-enabled site-selective higher-order construction of MOF-based materials is highlighted. Finally, challenges and prospects for anisotropic MOFs are discussed, aiming to provide inspiration for further developments in this interesting research field.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aS. C. Glotzer, M. J. Solomon, Nat. Mater. 2007, 6, 557–562;
- 1bS. Han, S. Pensec, D. Yilmaz, C. Lorthioir, J. Jestin, J. M. Guigner, F. Niepceron, J. Rieger, F. Stoffelbach, E. Nicol, O. Colombani, L. Bouteiller, Nat. Commun. 2020, 11, 4760;
- 1cA. K. Pearce, T. R. Wilks, M. C. Arno, R. K. O'Reilly, Nat. Chem. Rev. 2021, 5, 21–45.
- 2J. Du, R. K. O'Reilly, Chem. Soc. Rev. 2011, 40, 2402–2416.
- 3A. Walther, A. H. Muller, Chem. Rev. 2013, 113, 5194–5261.
- 4W. Liang, Y. Wang, L. Zhao, W. Guo, D. Li, W. Qin, H. Wu, Y. Sun, L. Jiang, Adv. Mater. 2021, 33, 2100713.
- 5R. Feng, F. Song, Y.-D. Zhang, X.-L. Wang, Y.-Z. Wang, Nat. Commun. 2022, 13, 3078.
- 6Y. Ma, K. Lan, B. Xu, L. Xu, L. Duan, M. Liu, L. Chen, T. Zhao, J.-Y. Zhang, Z. Lv, A. A. Elzatahry, X. Li, D. Zhao, Nano Lett. 2021, 21, 6071–6079.
- 7J. Reguera, J. Langer, D. Jimenez de Aberasturi, L. M. Liz-Marzan, Chem. Soc. Rev. 2017, 46, 3866–3885.
- 8
- 8aX. Liu, F. Zhang, X. Jing, M. Pan, P. Liu, W. Li, B. Zhu, J. Li, H. Chen, L. Wang, J. Lin, Y. Liu, D. Zhao, H. Yan, C. Fan, Nature 2018, 559, 593–598;
- 8bY. Shang, N. Li, S. Liu, L. Wang, Z. G. Wang, Z. Zhang, B. Ding, Adv. Mater. 2020, 32, 2000294;
- 8cM. Yan, T. Liu, X. Li, S. Zhou, H. Zeng, Q. Liang, K. Liang, X. Wei, J. Wang, Z. Gu, L. Jiang, D. Zhao, B. Kong, J. Am. Chem. Soc. 2022, 144, 7778–7789.
- 9B. Wu, D. Liu, S. Mubeen, T. T. Chuong, M. Moskovits, G. D. Stucky, J. Am. Chem. Soc. 2016, 138, 1114–1117.
- 10
- 10aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 10bW. Gong, Z. Chen, J. Dong, Y. Liu, Y. Cui, Chem. Rev. 2022, 122, 9078–9144;
- 10cA. Saura-Sanmartin, A. Pastor, A. Martinez-Cuezva, G. Cutillas-Font, M. Alajarin, J. Berna, Chem. Soc. Rev. 2022, 51, 4949–4976.
- 11
- 11aH. S. Jadhav, H. A. Bandal, S. Ramakrishna, H. Kim, Adv. Mater. 2022, 34, 2107072;
- 11bT. Xia, Y. Lin, W. Li, M. Ju, Chin. Chem. Lett. 2021, 32, 2975–2984;
- 11cX. Zhang, J. Maddock, T. M. Nenoff, M. A. Denecke, S. Yang, M. Schroder, Chem. Soc. Rev. 2022, 51, 3243–3262.
- 12
- 12aF. M. Amombo Noa, E. S. Grape, M. Ahlen, W. E. Reinholdsson, C. R. Gob, F. X. Coudert, O. Cheung, A. K. Inge, L. Ohrstrom, J. Am. Chem. Soc. 2022, 144, 8725–8733;
- 12bZ. Chen, K. O. Kirlikovali, P. Li, O. K. Farha, Acc. Chem. Res. 2022, 55, 579–591;
- 12cM. Kazem-Rostami, A. Orte, A. M. Ortuño, A. H. G. David, I. Roy, D. Miguel, A. Garci, C. M. Cruz, C. L. Stern, J. M. Cuerva, J. F. Stoddart, J. Am. Chem. Soc. 2022, 144, 9380–9389.
- 13
- 13aX. Cai, Z. Xie, D. Li, M. Kassymova, S.-Q. Zang, H.-L. Jiang, Coord. Chem. Rev. 2020, 417, 213366;
- 13bS. Wang, C. M. McGuirk, A. d′Aquino, J. A. Mason, C. A. Mirkin, Adv. Mater. 2018, 30, 1800202;
- 13cY. S. Wei, L. Zou, H. F. Wang, Y. Wang, Q. Xu, Adv. Energy Mater. 2022, 12, 2003970;
- 13dX. Xiao, L. Zou, H. Pang, Q. Xu, Chem. Soc. Rev. 2020, 49, 301–331;
- 13eB. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Adv. Mater. 2021, 33, 2006042.
- 14D. Liu, X. Zhang, Y. J. Wang, S. Song, L. Cui, H. Fan, X. Qiao, B. Fang, Nanoscale 2020, 12, 9524–9532.
- 15
- 15aR. C. Arbulu, Y. B. Jiang, E. J. Peterson, Y. Qin, Angew. Chem. Int. Ed. 2018, 57, 5813–5817; Angew. Chem. 2018, 130, 5915–5919;
- 15bY. Huang, S. L. Zhang, X. F. Lu, Z. P. Wu, D. Luan, X. W. D. Lou, Angew. Chem. Int. Ed. 2021, 60, 11841–11846; Angew. Chem. 2021, 133, 11947–11952;
- 15cC. Liu, J. Wang, J. Wan, Y. Cheng, R. Huang, C. Zhang, W. Hu, G. Wei, C. Yu, Angew. Chem. Int. Ed. 2020, 59, 3630–3637; Angew. Chem. 2020, 132, 3659–3666;
- 15dX. F. Lu, L. Yu, J. Zhang, X. W. D. Lou, Adv. Mater. 2019, 31, 1900699;
- 15eY. Zeng, Y. Wang, Q. Jin, Z. Pei, D. Luan, X. Zhang, X. W. D. Lou, Angew. Chem. Int. Ed. 2021, 60, 25793–25798; Angew. Chem. 2021, 133, 25997–26002;
- 15fP. Zhang, X. F. Lu, D. Luan, X. W. D. Lou, Angew. Chem. Int. Ed. 2020, 59, 8128–8132; Angew. Chem. 2020, 132, 8205–8209;
- 15gS. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 16184.
- 16
- 16aX.-M. Cheng, X.-Y. Dao, S.-Q. Wang, J. Zhao, W.-Y. Sun, ACS Catal. 2021, 11, 650–658;
- 16bF. Guo, J. H. Guo, P. Wang, Y. S. Kang, Y. Liu, J. Zhao, W. Y. Sun, Chem. Sci. 2019, 10, 4834–4838;
- 16cY. Zheng, H. Zhou, B. Zhou, J. Mao, Y. Zhao, Catal. Sci. Technol. 2022, 12, 969–975.
- 17
- 17aM. Ding, R. W. Flaig, H. L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828;
- 17bC. Liu, J. Wang, J. Wan, C. Yu, Coord. Chem. Rev. 2021, 432, 213743;
- 17cL. Zou, M. Kitta, J. Hong, K. Suenaga, N. Tsumori, Z. Liu, Q. Xu, Adv. Mater. 2019, 31, 1900440.
- 18
- 18aJ. Nai, Y. Lu, L. Yu, X. Wang, X. W. D. Lou, Adv. Mater. 2017, 29, 1703870;
- 18bX. Yu, L. Yu, H. B. Wu, X. W. Lou, Angew. Chem. Int. Ed. 2015, 54, 5331–5335;
- 18cW. Zhang, H. Song, Y. Cheng, C. Liu, C. Wang, M. A. N. Khan, H. Zhang, J. Liu, C. Yu, L. Wang, J. Li, Adv. Sci. 2019, 6, 1801901;
- 18dW. Zhang, Y. Zhao, V. Malgras, Q. Ji, D. Jiang, R. Qi, K. Ariga, Y. Yamauchi, J. Liu, J. S. Jiang, M. Hu, Angew. Chem. Int. Ed. 2016, 55, 8228–8234; Angew. Chem. 2016, 128, 8368–8374;
- 18eQ. Lei, J. Guo, E. Arreguin-Martinez, J. Shi, C. J. Brinker, W. Zhu, ACS Appl. Bio Mater. 2021, 4, 1221–1228;
- 18fC. Liu, T. Bao, L. Yuan, C. Zhang, J. Wang, J. Wan, C. Yu, Adv. Funct. Mater. 2022, 32, 2111404;
- 18gC. Liu, L. Lin, Q. Sun, J. Wang, R. Huang, W. Chen, S. Li, J. Wan, J. Zou, C. Yu, Chem. Sci. 2020, 11, 3680–3686;
- 18hM. Wang, Y. Xu, C. K. Peng, S. Y. Chen, Y. G. Lin, Z. Hu, L. Sun, S. Ding, C. W. Pao, Q. Shao, X. Huang, J. Am. Chem. Soc. 2021, 143, 16512–16518.
- 19
- 19aL. Feng, K. Y. Wang, J. Willman, H. C. Zhou, ACS Cent. Sci. 2020, 6, 359–367;
- 19bY. Luo, M. Ahmad, A. Schug, M. Tsotsalas, Adv. Mater. 2019, 31, 1901744.
- 20L. Feng, K.-Y. Wang, J. Powell, H.-C. Zhou, Matter 2019, 1, 801–824.
- 21S. L. Zhang, B. Y. Guan, X. F. Lu, S. Xi, Y. Du, X. W. D. Lou, Adv. Mater. 2020, 32, 2002235.
- 22H. Xu, X. Zhao, C. Yu, Y. Sun, Z. Hui, R. Zhou, J. Xue, H. Dai, Y. Zhao, L. Wang, Y. Gong, J. Zhou, J. An, Q. Chen, G. Sun, W. Huang, Nanoscale 2020, 12, 11112–11118.
- 23J. Zhang, L. Yu, Y. Chen, X. F. Lu, S. Gao, X. W. D. Lou, Adv. Mater. 2020, 32, 1906432.
- 24W. Cho, H. J. Lee, M. Oh, J. Am. Chem. Soc. 2008, 130, 16943–16946.
- 25J. Troyano, A. Carne-Sanchez, C. Avci, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2019, 48, 5534–5546.
- 26J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C. Y. Su, Chem. Soc. Rev. 2014, 43, 6011–6061.
- 27J. Lv, H. Zhang, D. Zhang, L. Liu, Y. Han, Acc. Mater. Res. 2022, 3, 552–564.
- 28L. Tong, S. Huang, Y. Shen, S. Liu, X. Ma, F. Zhu, G. Chen, G. Ouyang, Nat. Commun. 2022, 13, 951.
- 29L. Han, X. Y. Yu, X. W. Lou, Adv. Mater. 2016, 28, 4601–4605.
- 30W. Liu, J. Huang, Q. Yang, S. Wang, X. Sun, W. Zhang, J. Liu, F. Huo, Angew. Chem. Int. Ed. 2017, 56, 5512–5516; Angew. Chem. 2017, 129, 5604–5608.
- 31T. Qiu, S. Gao, Z. Liang, D. G. Wang, H. Tabassum, R. Zhong, R. Zou, Angew. Chem. Int. Ed. 2021, 60, 17314–17336; Angew. Chem. 2021, 133, 17455–17477.
- 32W. Xu, B. Tu, Q. Liu, Y. Shu, C.-C. Liang, C. S. Diercks, O. M. Yaghi, Y.-B. Zhang, H. Deng, Q. Li, Nat. Rev. Mater. 2020, 5, 764–779.
- 33
- 33aG. Mínguez Espallargas, E. Coronado, Chem. Soc. Rev. 2018, 47, 533–557;
- 33bZ. Rahmati, R. Khajavian, M. Mirzaei, Inorg. Chem. Front. 2021, 8, 3581–3586.
- 34Z. X. Cai, Z. L. Wang, Y. J. Xia, H. Lim, W. Zhou, A. Taniguchi, M. Ohtani, K. Kobiro, T. Fujita, Y. Yamauchi, Angew. Chem. Int. Ed. 2021, 60, 4747–4755; Angew. Chem. 2021, 133, 4797–4805.
- 35
- 35aJ. Nai, B. Y. Guan, L. Yu, X. W. D. Lou, Sci. Adv. 2017, 3, 1700732;
- 35bJ. Nai, J. Zhang, X. W. Lou, Chem 2018, 4, 1967–1982.
- 36
- 36aL. Sun, Y. Yuan, F. Wang, Y. Zhao, W. Zhan, X. Han, Nano Energy 2020, 74, 104909;
- 36bG. Zhang, Y. Li, X. Xiao, Y. Shan, Y. Bai, H.-G. Xue, H. Pang, Z. Tian, Q. Xu, Nano Lett. 2021, 21, 3016–3025.
- 37
- 37aM. Hu, Y. Ju, K. Liang, T. Suma, J. Cui, F. Caruso, Adv. Funct. Mater. 2016, 26, 5827–5834;
- 37bW. Zhang, X. Jiang, Y. Zhao, A. Carne-Sanchez, V. Malgras, J. Kim, J. H. Kim, S. Wang, J. Liu, J. S. Jiang, Y. Yamauchi, M. Hu, Chem. Sci. 2017, 8, 3538–3546.
- 38C. Avci, J. Arinez-Soriano, A. Carne-Sanchez, V. Guillerm, C. Carbonell, I. Imaz, D. Maspoch, Angew. Chem. Int. Ed. 2015, 54, 14417–14421; Angew. Chem. 2015, 127, 14625–14629.
- 39J. Wei, N. Cheng, Z. Liang, Y. Wu, Z. Zou, Z. Zhuang, Y. Yu, J. Mater. Chem. A 2018, 6, 23336–23344.
- 40J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 2015, 54, 10889–10893; Angew. Chem. 2015, 127, 11039–11043.
- 41Y. Gu, Y. N. Wu, L. Li, W. Chen, F. Li, S. Kitagawa, Angew. Chem. Int. Ed. 2017, 56, 15658–15662; Angew. Chem. 2017, 129, 15864–15868.
- 42S. Choi, T. Kim, H. Ji, H. J. Lee, M. Oh, J. Am. Chem. Soc. 2016, 138, 14434–14440.
- 43
- 43aS. Lee, G. Lee, M. Oh, ACS Nano 2021, 15, 17907–17916;
- 43bX. G. Wang, L. Xu, M. J. Li, X. Z. Zhang, Angew. Chem. Int. Ed. 2020, 59, 18078–18086; Angew. Chem. 2020, 132, 18234–18242;
- 43cM. Zhao, J. Chen, B. Chen, X. Zhang, Z. Shi, Z. Liu, Q. Ma, Y. Peng, C. Tan, X. J. Wu, H. Zhang, J. Am. Chem. Soc. 2020, 142, 8953–8961.
- 44D. Lyu, W. Xu, Y. Wang, Angew. Chem. Int. Ed. 2022, 61, e202115076; Angew. Chem. 2022, 134, e202115076.
- 45C. Liu, Q. Sun, L. Lin, J. Wang, C. Zhang, C. Xia, T. Bao, J. Wan, R. Huang, J. Zou, C. Yu, Nat. Commun. 2020, 11, 4971.
- 46
- 46aQ. Yang, Q. Xu, H. L. Jiang, Chem. Soc. Rev. 2017, 46, 4774–4808;
- 46bQ. L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468–5512.
- 47S. Dang, Q.-L. Zhu, Q. Xu, Nat. Rev. Mater. 2018, 3, 17075.
- 48C. Zhang, R. Lu, C. Liu, J. Lu, Y. Zou, L. Yuan, J. Wang, G. Wang, Y. Zhao, C. Yu, Adv. Sci. 2022, 9, 2104768.
- 49Y. Bai, C. Liu, Y. Shan, T. Chen, Y. Zhao, C. Yu, H. Pang, Adv. Energy Mater. 2022, 12, 2100346.
- 50
- 50aY. Niu, S. Gong, X. Liu, C. Xu, M. Xu, S.-G. Sun, Z. Chen, eScience 2022, https://doi.org/10.1016/j.esci.2022.05.001;
- 50bR. Yan, T. Ma, M. Cheng, X. Tao, Z. Yang, F. Ran, S. Li, B. Yin, C. Cheng, W. Yang, Adv. Mater. 2021, 33, 2008784;
- 50cH. Yang, Y. Liu, X. Liu, X. Wang, H. Tian, G. I. N. Waterhouse, P. E. Kruger, S. G. Telfer, S. Ma, eScience 2022, 2, 227–234.
- 51Y. Liu, C. Tang, M. Cheng, M. Chen, S. Chen, L. Lei, Y. Chen, H. Yi, Y. Fu, L. Li, ACS Catal. 2021, 11, 13374–13396.
- 52
- 52aX. Liao, F. Wang, F. Wang, Y. Cai, Y. Yao, B.-T. Teng, Q. Hao, L. Shuxiang, Appl. Catal. B 2019, 259, 118064;
- 52bY. Liu, P. Gao, C. Huang, Y. Li, Sci. China Chem. 2015, 58, 1553–1560.
- 53F. Yang, H. Mu, C. Wang, L. Xiang, K. X. Yao, L. Liu, Y. Yang, Y. Han, Y. Li, Y. Pan, Chem. Mater. 2018, 30, 3467–3473.
- 54C. B. Wahl, M. Aykol, J. H. Swisher, J. H. Montoya, S. K. Suram, C. A. Mirkin, Sci. Adv. 2021, 7, eabj5505.
- 55M. Song, G. Zhou, N. Lu, J. Lee, E. Nakouzi, H. Wang, D. Li, Science 2020, 367, 40–45.
- 56X. Yao, D. Chen, B. Zhao, B. Yang, Z. Jin, M. Fan, G. Tao, S. Qin, W. Yang, Q. He, Adv. Sci. 2022, 9, 2101965.