Nitrogen-Embedded Multi-Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings
Xuan Zeng
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiang Wang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorYuewei Zhang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGuoyun Meng
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Jinbei Wei
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorZiyang Liu
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiaoqin Jia
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGuomeng Li
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lian Duan
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Dongdong Zhang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXuan Zeng
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiang Wang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorYuewei Zhang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGuoyun Meng
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Jinbei Wei
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorZiyang Liu
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiaoqin Jia
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGuomeng Li
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lian Duan
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Dongdong Zhang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGraphical Abstract
Red multi-resonance emitters with high photoluminescence quantum yields and narrowband emission were demonstrated by introducing homogeneous hexatomic rings into nitrogen-embedded polycyclic aromatic hydrocarbons. The resulting devices afforded state-of-the-art performance with external quantum efficiency up to 18.2 % and superior operation stability.
Abstract
Nitrogen-containing polycyclic heteroaromatics have exhibited fascinating multi-resonance (MR) characteristics for efficient narrowband emission, but strategies to bathochromic shift their emissions while maintaining the narrow bandwidths remain exclusive. Here, homogeneous hexatomic rings are introduced into nitrogen-embedded MR skeletons to prolong the π-conjugation length for low-energy electronic transitions while retaining the non-bonding character of the remaining parts. The proof-of-the-concept emitters exhibit near unity photoluminescence quantum yields with peaks at 598 nm and 620 nm and small full-width-at-half-maximums of 28 nm and 31 nm, respectively. Optimal organic light-emitting diodes exhibit a high external quantum efficiency of 18.2 %, negligible efficiency roll-off, and ultra-long lifetime with negligible degradation at an initial luminance of 10 000 cd m−2 after 94 hours.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202117181-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. M. Ha, S. H. Hur, A. Pathak, J.-E. Jeong, H. Y. Woo, NPG Asia Mater. 2021, 13, 53;
- 1bP. Liu, X.-Y. Chen, J. Cao, L. Ruppenthal, J. M. Gottfried, K. Müllen, X.-Y. Wang, J. Am. Chem. Soc. 2021, 143, 5314–5318;
- 1cS. Madayanad Suresh, D. Hall, D. Beljonne, Y. Olivier, E. Zysman-Colman, Adv. Funct. Mater. 2020, 30, 1908677;
- 1dM. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479–3716.
- 2
- 2aT. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781;
- 2bK. Matsui, S. Oda, K. Yoshiura, K. Nakajima, N. Yasuda, T. Hatakeyama, J. Am. Chem. Soc. 2018, 140, 1195–1198;
- 2cJ. A. Knöller, G. Meng, X. Wang, D. Hall, A. Pershin, D. Beljonne, Y. Olivier, S. Laschat, E. Zysman-Colman, S. Wang, Angew. Chem. Int. Ed. 2020, 59, 3156–3160; Angew. Chem. 2020, 132, 3181–3185;
- 2dY. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu, L. Duan, Angew. Chem. Int. Ed. 2019, 58, 16912–16917; Angew. Chem. 2019, 131, 17068–17073.
- 3
- 3aS. O. Jeon, K. H. Lee, J. S. Kim, S.-G. Ihn, Y. S. Chung, J. W. Kim, H. Lee, S. Kim, H. Choi, J. Y. Lee, Nat. Photonics 2021, 15, 208–215;
- 3bY. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678–682;
- 3cD. Zhang, L. Duan, Nat. Photonics 2021, 15, 173–174;
- 3dY. Zhang, D. Zhang, J. Wei, X. Hong, Y. Lu, D. Hu, G. Li, Z. Liu, Y. Chen, L. Duan, Angew. Chem. Int. Ed. 2020, 59, 17499–17503; Angew. Chem. 2020, 132, 17652–17656.
- 4
- 4aN. Ikeda, S. Oda, R. Matsumoto, M. Yoshioka, D. Fukushima, K. Yoshiura, N. Yasuda, T. Hatakeyama, Adv. Mater. 2020, 32, 2004072;
- 4bP. Jiang, J. Miao, X. Cao, H. Xia, K. Pan, T. Hua, X. Lv, Z. Huang, Y. Zou, C. Yang, Adv. Mater. 2022, 34, 2106954;
- 4cG. Liu, H. Sasabe, K. Kumada, A. Matsunaga, H. Katagiri, J. Kido, J. Mater. Chem. C 2021, 9, 8308–8313;
- 4dY. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 20498–20503; Angew. Chem. 2021, 133, 20661–20666.
- 5
- 5aH. Hirai, K. Nakajima, S. Nakatsuka, K. Shiren, J. Ni, S. Nomura, T. Ikuta, T. Hatakeyama, Angew. Chem. Int. Ed. 2015, 54, 13581–13585; Angew. Chem. 2015, 127, 13785–13789;
- 5bY. Kitamoto, T. Suzuki, Y. Miyata, H. Kita, K. Funaki, S. Oi, Chem. Commun. 2016, 52, 7098–7101.
- 6
- 6aD. Hall, S. M. Suresh, P. L. dos Santos, E. Duda, S. Bagnich, A. Pershin, P. Rajamalli, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, A. Köhler, I. D. W. Samuel, Y. Olivier, E. Zysman-Colman, Adv. Opt. Mater. 2020, 8, 1901627;
- 6bX. Li, Y.-Z. Shi, K. Wang, M. Zhang, C.-J. Zheng, D.-M. Sun, G.-L. Dai, X.-C. Fan, D.-Q. Wang, W. Liu, Y.-Q. Li, J. Yu, X.-M. Ou, C. Adachi, X.-H. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 13472–13480;
- 6cH. Min, I. S. Park, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 7643–7648; Angew. Chem. 2021, 133, 7721–7726;
- 6dY. Yuan, X. Tang, X.-Y. Du, Y. Hu, Y.-J. Yu, Z.-Q. Jiang, L.-S. Liao, S.-T. Lee, Adv. Opt. Mater. 2019, 7, 1801536;
- 6eS.-N. Zou, C.-C. Peng, S.-Y. Yang, Y.-K. Qu, Y.-J. Yu, X. Chen, Z.-Q. Jiang, L.-S. Liao, Org. Lett. 2021, 23, 958–962.
- 7
- 7aH. L. Lee, W. J. Chung, J. Y. Lee, Small 2020, 16, 1907569;
- 7bV. V. Patil, H. L. Lee, I. Kim, K. H. Lee, W. J. Chung, J. Kim, S. Park, H. Choi, W.-J. Son, S. O. Jeon, J. Y. Lee, Adv. Sci. 2021, 8, 2101137;
- 7cV. V. Patil, J. Lim, J. Y. Lee, ACS Appl. Mater. Interfaces 2021, 13, 14440–14446;
- 7dJ. Wei, C. Zhang, D. Zhang, Y. Zhang, Z. Liu, Z. Li, G. Yu, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 12269–12273; Angew. Chem. 2021, 133, 12377–12381.
- 8
- 8aJ.-K. Li, X.-Y. Chen, Y.-L. Guo, X.-C. Wang, A. C. H. Sue, X.-Y. Cao, X.-Y. Wang, J. Am. Chem. Soc. 2021, 143, 17958–17963;
- 8bY. Liu, X. Xiao, Y. Ran, Z. Bin, J. You, Chem. Sci. 2021, 12, 9408–9412;
- 8cY. Qi, W. Ning, Y. Zou, X. Cao, S. Gong, C. Yang, Adv. Funct. Mater. 2021, 31, 2102017;
- 8dY. Xu, C. Li, Z. Li, Q. Wang, X. Cai, J. Wei, Y. Wang, Angew. Chem. Int. Ed. 2020, 59, 17442–17446; Angew. Chem. 2020, 132, 17595–17599;
- 8eM. Yang, I. S. Park, T. Yasuda, J. Am. Chem. Soc. 2020, 142, 19468–19472.
- 9S. Oda, W. Kumano, T. Hama, R. Kawasumi, K. Yoshiura, T. Hatakeyama, Angew. Chem. Int. Ed. 2021, 60, 2882–2886; Angew. Chem. 2021, 133, 2918–2922.
- 10
- 10aJ. V. Caspar, E. M. Kober, B. P. Sullivan, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 630–632;
- 10bQ. Zhang, H. Kuwabara, W. J. Potscavage, S. Huang, Y. Hatae, T. Shibata, C. Adachi, J. Am. Chem. Soc. 2014, 136, 18070–18081.
- 11
- 11aJ. H. Kim, J. H. Yun, J. Y. Lee, Adv. Opt. Mater. 2018, 6, 1800255;
- 11bE. V. Puttock, C. S. K. Ranasinghe, M. Babazadeh, J. Jang, D. M. Huang, Y. Tsuchiya, C. Adachi, P. L. Burn, P. E. Shaw, Macromolecules 2020, 53, 10375–10385;
- 11cF. Ni, C.-W. Huang, Y. Tang, Z. Chen, Y. Wu, S. Xia, X. Cao, J.-H. Hsu, W.-K. Lee, K. Zheng, Z. Huang, C.-C. Wu, C. Yang, Mater. Horiz. 2021, 8, 547–555;
- 11dX. Zeng, Y.-H. Huang, S. Gong, P. Li, W.-K. Lee, X. Xiao, Y. Zhang, C. Zhong, C.-C. Wu, C. Yang, Mater. Horiz. 2021, 8, 2286–2292.
- 12
- 12aK. Wu, T. Zhang, Z. Wang, L. Wang, L. Zhan, S. Gong, C. Zhong, Z.-H. Lu, S. Zhang, C. Yang, J. Am. Chem. Soc. 2018, 140, 8877–8886;
- 12bA. Khan, X. Tang, C. Zhong, Q. Wang, S.-Y. Yang, F.-C. Kong, S. Yuan, A. S. D. Sandanayaka, C. Adachi, Z.-Q. Jiang, L.-S. Liao, Adv. Funct. Mater. 2021, 31, 2009488.
- 13C. Zhang, Y. Lu, Z. Liu, Y. Zhang, X. Wang, D. Zhang, L. Duan, Adv. Mater. 2020, 32, 2004040.
- 14J.-H. Lee, H. Shin, J.-M. Kim, K.-H. Kim, J.-J. Kim, ACS Appl. Mater. Interfaces 2017, 9, 3277–3281.
- 15M. Nagata, H. Min, E. Watanabe, H. Fukumoto, Y. Mizuhata, N. Tokitoh, T. Agou, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 20280–20285; Angew. Chem. 2021, 133, 20442–20447.