Dynamic Manipulating Space-Resolved Persistent Luminescence in Core–Shell MOFs Heterostructures via Reversible Photochromism
Yu-Juan Ma
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorXiaoyu Fang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorGuowei Xiao
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dongpeng Yan
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorYu-Juan Ma
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorXiaoyu Fang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorGuowei Xiao
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dongpeng Yan
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorGraphical Abstract
Multiblock core–shell MOFs heterojunctions were prepared through an epitaxial growth process, in which the shell exhibits both persistent luminescence and photochromic properties. The bright yellow afterglow in MOFs shell can be detected before irradiation but almost disappears after coloration upon continuous UV irradiation.
Abstract
Photo-controllable persistent luminescence at the single crystal level can be achieved by the integration of long-lived room temperature phosphorescence (RTP) and photochromism within metal–organic frameworks (MOFs) for the first time. Moreover, the multiblock core–shell heterojunctions have been prepared utilizing the isostructural MOFs through an epitaxial growth process, in which the shell exhibits bright yellow afterglow emission that gradually disappears upon further irradiation, but the core does not show such property. Benefitting from combined persistent luminescence and photochromic behavior, a multiple encryption demo can be facilely designed based on the dynamic manipulating RTP via reversible photochromism. This work not only develops new types of dynamically photo-controllable afterglow switch, but also provides a method to obtain MOFs-based optical heterojunctions towards potential space/time-resolved information encryption and anti-counterfeiting applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202114100-sup-0001-misc_information.pdf6.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Gao, M. S. Kodaimatic, D. Yan, Chem. Soc. Rev. 2021, 50, 5564–5589.
- 2X. Zhen, R. Qu, W. Chen, W. Wu, X. Jiang, Biomater. Sci. 2021, 9, 285–300.
- 3T. Zhang, X. Ma, H. Wu, L. Zhu, Y. Zhao, H. Tian, Angew. Chem. Int. Ed. 2020, 59, 11206–11216; Angew. Chem. 2020, 132, 11302–11312.
- 4R. Kabe, C. Adachi, Nature 2017, 550, 384–387.
- 5X.-K. Ma, W. Zhang, Z. Liu, H. Zhang, B. Zhang, Y. Liu, Adv. Mater. 2021, 33, 2007476.
- 6L. Gu, H. Wu, H. Ma, W. Ye, W. Jia, H. Wang, H. Chen, N. Zhang, D. Wang, C. Qian, Z. An, W. Huang, Y. Zhao, Nat. Commun. 2020, 11, 944.
- 7R. Gao, X. Mei, D. Yan, R. Liang, M. Wei, Nat. Commun. 2018, 9, 2798.
- 8Z. Gao, B. Xu, T. Zhang, Z. Liu, W. Zhang, X. Sun, Y. Liu, X. Wang, Z. Wang, Y. Yan, F. Hu, X. Meng, Y. S. Zhao, Angew. Chem. Int. Ed. 2020, 59, 19060–19064; Angew. Chem. 2020, 132, 19222–19226.
- 9D. Venkatakrishnarao, M. A. Mohiddon, N. Chandrasekhar, R. Chandrasekar, Adv. Opt. Mater. 2015, 3, 1035–1040.
- 10X. Yang, X. Lin, Y. Zhao, Y. S. Zhao, D. Yan, Angew. Chem. Int. Ed. 2017, 56, 7853–7857; Angew. Chem. 2017, 129, 7961–7965.
- 11B. Zhou, D. Yan, Angew. Chem. Int. Ed. 2019, 58, 15128–15135; Angew. Chem. 2019, 131, 15272–15279.
- 12K. Narushima, Y. Kiyota, T. Mori, S. Hirata, M. Vacha, Adv. Mater. 2019, 31, 1807268.
- 13Z. Mao, Z. Yang, Z. Fan, E. Ubba, W. Li, Y. Li, J. Zhao, Z. Yang, M. P. Aldred, Z. Chi, Chem. Sci. 2019, 10, 179–184.
- 14Q. Zhou, T. Yang, Z. Zhong, F. Kausar, Z. Wang, Y. Zhang, W. Z. Yuan, Chem. Sci. 2020, 11, 2926–2933.
- 15J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu, Z. Li, Nat. Commun. 2018, 9, 840.
- 16W. Zhao, Z. He, J. W. Y. Lam, Q. Peng, H. Ma, Z. Shuai, G. Bai, J. Hao, B. Z. Tang, Chem 2016, 1, 592–602.
- 17Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685–690.
- 18L. Gu, H. Shi , L. Bian, M. Gu, K. Ling, X. Wang, H. Ma, S. Cai, W. Ning, L. Fu, H. Wang, S. Wang, Y. Gao, W. Yao, F. Huo, Y. Tao, Z. An , X. Liu , W. Huang, Nat. Photonics 2019, 13, 406–411.
- 19M. Shimizu, A. Kimura, H. Sakaguchi, Eur. J. Org. Chem. 2016, 467–473.
- 20S. Hirata, Adv. Sci. 2019, 6, 1900410.
- 21O. Bolton, K. Lee, H.-J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205–210.
- 22M. Singh, K. Liu, S. Qu, H. Ma, H. Shi, Z. An, W. Huang, Adv. Opt. Mater. 2021, 9, 2002197.
- 23B. Zhou, D. Yan, Adv. Funct. Mater. 2019, 29, 1807599.
- 24J. Zhang, S. Xu, Z. Wang, P. Xue, W. Wang, L. Zhang, Y. Shi, W. Huang, R. Chen, Angew. Chem. Int. Ed. 2021, 60, 17094–17101; Angew. Chem. 2021, 133, 17231–17238.
- 25B. Zhou, G. Xiao, D. Yan, Adv. Mater. 2021, 33, 2007571.
- 26X.-Y. Lou, Y.-W. Yang, J. Am. Chem. Soc. 2021, 143, 11976–11981.
- 27L.-J. Xu, A. Plaviak, X. Lin, M. Worku, Q. He, M. Chaaban, B. J. Kim, B. Ma, Angew. Chem. Int. Ed. 2020, 59, 23067–23071; Angew. Chem. 2020, 132, 23267–23271.
- 28S. Liu, X. Fang, B. Lu, D. Yan, Nat. Commun. 2020, 11, 4649.
- 29L. Zhai, Z.-X. Yang, W.-W. Zhang, J.-L. Zuo, X.-M. Ren, Inorg. Chem. 2018, 57, 4171–4180.
- 30Z. Wang, C.-Y. Zhu, Z.-W. Wei, Y.-N. Fan, M. Pan, Chem. Mater. 2020, 32, 841–848.
- 31P. Leo, D. Briones, J. A. García, J. Cepeda, G. Orcajo, G. Calleja, A. Rodríguez-Diéguez, F. Martínez, Inorg. Chem. 2020, 59, 18432–18443.
- 32A.-Y. Ni, Y. Mu, J. Pan, S.-D. Han, M.-M. Shang, G.-M. Wang, Chem. Commun. 2018, 54, 3712–3714.
- 33J. Yang, M. Fang, Z. Li, InfoMat 2020, 2, 791–806.
- 34R. Pardo, M. Zayat, D. Levy, Chem. Soc. Rev. 2011, 40, 672–687.
- 35A. V. Hall, D. S. Yufit, D. C. Apperley, L. Senak, O. M. Musa, D. K. Hood, J. W. Steed, Chem. Sci. 2020, 11, 8025–8035.
- 36Z. Li, H. Chen, B. Li, Y. Xie, X. Gong, X. Liu, H. Li, Y. Zhao, Adv. Sci. 2019, 6, 1901529.
- 37X. Shang, I. Song, G. Y. Jung, W. Choi, H. Ohtsu, J. H. Lee, J. Y. Koo, B. Liu, J. Ahn, M. Kawano, S. K. Kwak, J. H. Oh, Nat. Commun. 2018, 9, 3933.
- 38B. Garai, A. Mallick, R. Banerjee, Chem. Sci. 2016, 7, 2195–2200.
- 39H.-Y. Li, H. Xu, S.-Q. Zang, T. C. W. Mak, Chem. Commun. 2016, 52, 525–528.
- 40P.-X. Li, M.-S. Wang, M.-J. Zhang, C.-S. Lin, L.-Z. Cai, S.-P. Guo, G.-C. Guo, Angew. Chem. Int. Ed. 2014, 53, 11529–11531; Angew. Chem. 2014, 126, 11713–11715.
- 41C. Sun, X.-Q. Yu, M.-S. Wang, G.-C. Guo, Angew. Chem. Int. Ed. 2019, 58, 9475–9478; Angew. Chem. 2019, 131, 9575–9578.
- 42C. Sun, G. Xu, X.-M. Jiang, G.-E. Wang, P.-Y. Guo, M.-S. Wang, G.-C. Guo, J. Am. Chem. Soc. 2018, 140, 2805–2811.
- 43T. Gong, X. Yang, J.-J. Fang, Q. Sui, F.-G. Xi, E.-Q. Gao, ACS Appl. Mater. Interfaces 2017, 9, 5503–5512.
- 44Y.-J. Ma, J.-X. Hu, S.-D. Han, J. Pan, J.-H. Li, G.-M. Wang, Chem. Commun. 2019, 55, 5631–5634.
- 45Y.-J. Ma, J.-X. Hu, S.-D. Han, J. Pan, J.-H. Li, G.-M. Wang, J. Am. Chem. Soc. 2020, 142, 2682–2689.
- 46Y. Li, F. Gu, B. Ding, L. Zou, X. Ma, Sci. China Chem. 2021, 64, 1297–1301.
- 47M.-H. You, M.-H. Li, Y.-M. Di, Y.-W. Wang, M.-J. Lin, Dyes Pigm. 2020, 173, 107943.
- 48W. Liu, J. Wang, Y. Gong, Q. Liao, Q. Dang, Z. Li, Z. Bo, Angew. Chem. Int. Ed. 2020, 59, 20161–20166; Angew. Chem. 2020, 132, 20336–20341.
- 49W.-J. Wei, Y. Mu, L. Wei, J.-X. Hu, G.-M. Wang, Inorg. Chem. 2021, 60, 108–114.
- 50C. Chen, J.-K. Sun, Y.-J. Zhang, X.-D. Yang, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 14458–14462; Angew. Chem. 2017, 129, 14650–14654.
- 51D. D. Dashitsyrenova, S. A. Adonin, I. D. Gorokh, O. A. Kraevaya, A. V. Pavlova, P. A. Abramov, L. A. Frolova, M. N. Sokolov, V. P. Fedin, P. A. Troshin, Chem. Commun. 2020, 56, 9162–9165.
- 52J. Wu, C. Tao, Y. Li, Y. Yan, J. Li, J. Yu, Chem. Sci. 2014, 5, 4237–4241.
- 53G. Brunet, E. A. Suturina, G. P. C. George, J. S. Ovens, P. Richardson, C. Bucher, M. Murugesu, Chem. Eur. J. 2020, 26, 16455–16462.
- 54A.-J. Liu, F. Xu, S.-D. Han, J. Pan, G.-M. Wang, Cryst. Growth Des. 2020, 20, 7350–7355.
- 55F. Tong, W. Li, Z. Li, I. Islam, R. O. Al-Kaysi, C. J. Bardeen, Angew. Chem. Int. Ed. 2020, 59, 23035–23039; Angew. Chem. 2020, 132, 23235–23239.
- 56C. Zhang, H. Dong, Y. S. Zhao, Adv. Opt. Mater. 2018, 6, 1701193.
- 57M.-P. Zhuo, X.-D. Wang, L.-S. Liao, Mater. Horiz. 2020, 7, 3161–3175.
- 58C. Yang, L. Gu, C. Ma, M. Gu, X. Xie, H. Shi, H. Ma, W. Yao, Z. An, W. Huang, Mater. Horiz. 2019, 6, 984–989.