Correlating Reaction Dynamics and Size Change during the Photomechanical Transformation of 9-Methylanthracene Single Crystals
Kohei Morimoto
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
Search for more papers by this authorCorresponding Author
Prof. Daichi Kitagawa
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
Search for more papers by this authorProf. Fei Tong
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Present address: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorDr. Kevin Chalek
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorProf. Leonard J. Mueller
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Christopher J. Bardeen
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Seiya Kobatake
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
Search for more papers by this authorKohei Morimoto
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
Search for more papers by this authorCorresponding Author
Prof. Daichi Kitagawa
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
Search for more papers by this authorProf. Fei Tong
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Present address: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorDr. Kevin Chalek
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorProf. Leonard J. Mueller
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Christopher J. Bardeen
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Seiya Kobatake
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
Search for more papers by this authorGraphical Abstract
The development of a nonlinear kinetic model for crystal reactions allows us to quantify for the first time how the kinetics depend on sample morphology. Furthermore, the quantitative connection between molecular reaction kinetics and mechanical response in well-defined single crystals provides a new benchmark for analyzing these photomechanical materials.
Abstract
Photomechanical molecular crystals that expand under illumination could potentially be used as photon-powered actuators. In this study, we find that the use of high-quality single crystals of 9-methylanthracene (9MA) leads to more homogeneous reaction kinetics than that previously seen for polycrystalline samples, presumably due to a lower concentration of defects. Furthermore, simultaneous observation of absorbance and shape changes in single crystals revealed that the dimensional change mirrors the reaction progress, resulting in a smooth expansion of 7 % along the c-axis that is linearly correlated with reaction progress. The same expansion dynamics are highly reproducible across different single crystal samples. Organic single crystals exhibit well-defined linear expansions during 100 % photoconversion, suggesting that this class of solid-state phase change material could be used for actuation.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202114089-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
anie202114089-sup-0001-Video_S1.mp4808.6 KB | Supporting Information |
anie202114089-sup-0001-Video_S2.mp41.5 MB | Supporting Information |
anie202114089-sup-0001-Video_S3.mp42.1 MB | Supporting Information |
anie202114089-sup-0001-Video_S4.mp4630.8 KB | Supporting Information |
anie202114089-sup-0001-Video_S5.mp42.1 MB | Supporting Information |
anie202114089-sup-0001-Video_S6.mp42.1 MB | Supporting Information |
anie202114089-sup-0001-Video_S7.mp42.1 MB | Supporting Information |
anie202114089-sup-0001-Video_S8.mp42.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work (Ed.: T. J. White), Wiley, Hoboken, 2017.
10.1002/9781119123279 Google Scholar
- 2 Mechanically Responsive Materials for Soft Robotics (Ed.: H. Koshima), Wiley, Weinheim, 2019.
- 3P. Naumov, S. Chizhik, M. K. Panda, N. K. Nath, E. Boldyreva, Chem. Rev. 2015, 115, 12440–12490.
- 4R. O. Al-Kaysi, C. J. Bardeen, Adv. Mater. 2007, 19, 1276–1280.
- 5S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature 2007, 446, 778–781.
- 6H. Koshima, N. Ojima, H. Uchimoto, J. Am. Chem. Soc. 2009, 131, 6890–6891.
- 7O. S. Bushuyev, A. Tomberg, T. Friščić, C. J. Barrett, J. Am. Chem. Soc. 2013, 135, 12556–12559.
- 8R. Nishimura, A. Fujimoto, N. Yasuda, M. Morimoto, T. Nagasaka, H. Sotome, S. Ito, H. Miyasaka, S. Yokojima, S. Nakamura, B. L. Feringa, K. Uchida, Angew. Chem. Int. Ed. 2019, 58, 13308–13312; Angew. Chem. 2019, 131, 13442–13446.
- 9L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, J. Am. Chem. Soc. 2011, 133, 12569–12575.
- 10D. Kitagawa, H. Nishi, S. Kobatake, Angew. Chem. Int. Ed. 2013, 52, 9320–9322; Angew. Chem. 2013, 125, 9490–9492.
- 11T. Kim, M. K. Al-Muhanna, S. D. Al-Suwaidan, R. O. Al-Kaysi, C. J. Bardeen, Angew. Chem. Int. Ed. 2013, 52, 6889–6893; Angew. Chem. 2013, 125, 7027–7031.
- 12J. M. Cole, J. de J. Velazquez-Garcia, D. J. Gosztola, S. G. Wang, Y.-S. Chen, Chem. Mater. 2019, 31, 4927–4935.
- 13F. Tong, M. Al-Haidar, L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, Chem. Commun. 2019, 55, 3709–3712.
- 14M. Tamaoki, D. Kitagawa, S. Kobatake, Cryst. Growth Des. 2021, 21, 3093–3099.
- 15P. Naumov, S. C. Sahoo, B. A. Zakharov, E. V. Boldyreva, Angew. Chem. Int. Ed. 2013, 52, 9990–9995; Angew. Chem. 2013, 125, 10174–10179.
- 16E. Hatano, M. Morimoto, T. Imai, K. Hyodo, A. Fujimoto, R. Nishimura, A. Sekine, N. Yasuda, S. Yokojima, S. Nakamura, K. Uchida, Angew. Chem. Int. Ed. 2017, 56, 12576–12580; Angew. Chem. 2017, 129, 12750–12754.
- 17D. Kitagawa, S. Kobatake, J. Phys. Chem. C 2013, 117, 20887–20892.
- 18T. Kim, L. Zhu, L. J. Mueller, C. J. Bardeen, J. Am. Chem. Soc. 2014, 136, 6617–6625.
- 19N. K. Nath, L. Pejov, S. M. Nichols, C. Hu, N. Saleh, B. Kahr, P. Naumov, J. Am. Chem. Soc. 2014, 136, 2757–2766.
- 20G. Liu, J. Liu, Y. Liu, X. Tao, J. Am. Chem. Soc. 2014, 136, 590–593.
- 21M. K. Panda, T. Runčevski, S. Chandra Sahoo, A. A. Belik, N. K. Nath, R. E. Dinnebier, P. Naumov, Nat. Commun. 2014, 5, 4811.
- 22 Photochromism: Molecules and Systems (Eds.: H. Durr, H. Bouas-Laurent), Elsevier, Amsterdam, 2003.
- 23S. Aiken, R. J. L. Edgar, C. D. Gabbutt, B. M. Heron, P. A. Hobson, Dyes Pigm. 2018, 149, 92–121.
- 24A. E. Keating, M. A. Garcia-Garibay in Organic and Inorganic Photochemistry, Vol. 2 (Eds.: V. Ramamurthy, K. S. Schanze), Marcel Dekker, New York, 1998, pp. 195–248.
- 25S. Takahashi, H. Miura, H. Kasai, S. Okada, H. Oikawa, H. Nakanishi, J. Am. Chem. Soc. 2002, 124, 10944–10945.
- 26R. O. Al-Kaysi, A. M. Müller, C. J. Bardeen, J. Am. Chem. Soc. 2006, 128, 15938–15939.
- 27D.-K. Bučar, L. R. MacGillivray, J. Am. Chem. Soc. 2007, 129, 32–33.
- 28M. Bertmer, R. C. Nieuwendaal, A. B. Barnes, S. E. Hayes, J. Phys. Chem. B 2006, 110, 6270–6273.
- 29J. Davaasambuu, G. Busse, S. Techert, J. Phys. Chem. A 2006, 110, 3261–3265.
- 30J. D. Dunitz, Pure Appl. Chem. 1991, 63, 177–185.
- 31J. W. Christian, G. B. Olson, M. Cohen, J. Phys. IV 1995, 05, C8-3–C8-10.
- 32 The Theory of Transformations in Metals and Alloys (Ed.: J. W. Christian), Pergamon, Oxford, 2002.
- 33S. K. Park, Y. Diao, Chem. Soc. Rev. 2020, 49, 8287–8314.
- 34O. Scheidsteger, G. Huttner, V. Bejenke, W. Gartzke, Z. Naturforsch. B 1983, 38, 1598–1614.
- 35M. T. Ruggiero, J. A. Zeitler, T. M. Korter, Phys. Chem. Chem. Phys. 2017, 19, 28502–28506.
- 36H. Chung, D. Dudenko, F. Zhang, G. D′Avino, C. Ruzié, A. Richard, G. Schweicher, J. Cornil, D. Beljonne, Y. Geerts, Y. Diao, Nat. Commun. 2018, 9, 278.
- 37S. W. Kennedy, J. Mater. Sci. 1974, 9, 1391–1392.
- 38Yu. V. Mnyukh, N. A. Panfilova, N. N. Petropavlov, N. S. Uchvatova, J. Phys. Chem. Solids 1975, 36, 127–144.
- 39S. Yamamoto, K.-H. Grellmann, A. Weller, Chem. Phys. Lett. 1980, 70, 241–245.
- 40E.-Z. M. Ebeid, A.-F. M. Habib, S. A. Azim, React. Solids 1988, 6, 39–44.
- 41A. S. Dvornikov, P. M. Rentzepis, Res. Chem. Intermed. 1996, 22, 115–128.
- 42F. Tong, W. Xu, M. Al-Haidar, D. Kitagawa, R. O. Al-Kaysi, C. J. Bardeen, Angew. Chem. Int. Ed. 2018, 57, 7080–7084; Angew. Chem. 2018, 130, 7198–7202.
- 43I. Turowska-Tyrk, E. Trzop, Acta Crystallogr. Sect. B 2003, 59, 779–786.
- 44F. Tong, M. P. Hanson, C. J. Bardeen, Phys. Chem. Chem. Phys. 2016, 18, 31936–31945.
- 45K. Morimoto, H. Tsujioka, D. Kitagawa, S. Kobatake, Bull. Chem. Soc. Jpn. 2019, 92, 1299–1304.
- 46K. Morimoto, H. Tsujioka, D. Kitagawa, S. Kobatake, J. Phys. Chem. A 2020, 124, 4732–4741.
- 47G. Kaupp, Angew. Chem. Int. Ed. Engl. 1992, 31, 595–598; Angew. Chem. 1992, 104, 609–612.
- 48J. C. J. Bart, G. M. J. Schmidt, Isr. J. Chem. 1971, 9, 429–448.
- 49K. R. Chalek, X. Dong, F. Tong, R. A. Kudla, L. Zhu, A. D. Gill, W. Xu, C. Yang, J. D. Hartman, A. Magalhães, R. O. Al-Kaysi, R. C. Hayward, R. J. Hooley, G. J. O. Beran, C. J. Bardeen, L. J. Mueller, Chem. Sci. 2021, 12, 453–463.
- 50D. L. Dorset, W. A. Pangborn, Proc. Natl. Acad. Sci. USA 1992, 89, 1822–1826.
- 51H. H.-M. Yeung, W. Li, P. J. Saines, T. K. J. Köster, C. P. Grey, A. K. Cheetham, Angew. Chem. Int. Ed. 2013, 52, 5544–5547; Angew. Chem. 2013, 125, 5654–5657.
- 52S. P. Thomas, R. Sathishkumar, T. N. G. Row, Chem. Commun. 2015, 51, 14255–14258.