Intramolecular Noncovalent Interaction-Enabled Dopant-Free Hole-Transporting Materials for High-Performance Inverted Perovskite Solar Cells
Dr. Kun Yang
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorQiaogan Liao
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorDr. Jun Huang
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorZilong Zhang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorMengyao Su
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorDr. Zhicai Chen
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorZiang Wu
Department of Chemistry, Korea University, Seoul, 136–713 Republic of Korea
Search for more papers by this authorDong Wang
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorZiwei Lai
Institute of Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorProf. Han Young Woo
Department of Chemistry, Korea University, Seoul, 136–713 Republic of Korea
Search for more papers by this authorProf. Yan Cao
Institute of Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorCorresponding Author
Prof. Peng Gao
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Xugang Guo
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorDr. Kun Yang
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorQiaogan Liao
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorDr. Jun Huang
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorZilong Zhang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorMengyao Su
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorDr. Zhicai Chen
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorZiang Wu
Department of Chemistry, Korea University, Seoul, 136–713 Republic of Korea
Search for more papers by this authorDong Wang
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorZiwei Lai
Institute of Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorProf. Han Young Woo
Department of Chemistry, Korea University, Seoul, 136–713 Republic of Korea
Search for more papers by this authorProf. Yan Cao
Institute of Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorCorresponding Author
Prof. Peng Gao
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Xugang Guo
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorGraphical Abstract
By incorporating intramolecular S⋅⋅⋅O noncovalent interactions (INIs) for boosting the intrinsic hole mobilities, two simple-structured dopant-free hole-transporting materials (HTMs) were designed and delivered a remarkable efficiency of 21.10 % with decent device stability in inverted perovskite solar cells, demonstrating the great promise of the INI strategy for accessing high-performance dopant-free HTMs.
Abstract
Intramolecular noncovalent interactions (INIs) have served as a powerful strategy for accessing organic semiconductors with enhanced charge transport properties. Herein, we apply the INI strategy for developing dopant-free hole-transporting materials (HTMs) by constructing two small-molecular HTMs featuring an INI-integrated backbone for high-performance perovskite solar cells (PVSCs). Upon incorporating noncovalent S⋅⋅⋅O interaction into their simple-structured backbones, the resulting HTMs, BTORA and BTORCNA, showed self-planarized backbones, tuned energy levels, enhanced thermal properties, appropriate film morphology, and effective defect passivation. More importantly, the high film crystallinity enables the materials with substantial hole mobilities, thus rendering them as promising dopant-free HTMs. Consequently, the BTORCNA-based inverted PVSCs delivered a power conversion efficiency of 21.10 % with encouraging long-term device stability, outperforming the devices based on BTRA without S⋅⋅⋅O interaction (18.40 %). This work offers a practical approach to designing charge transporting layers with high intrinsic mobilities for high-performance PVSCs.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202113749-sup-0001-misc_information.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051;
- 1bJ. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, V. Bulović, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587–593;
- 1cN.-G. Park, Mater. Today 2015, 18, 65–72;
- 1dA. K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 2019, 119, 3036–3103;
- 1eP. K. Nayak, S. Mahesh, H. J. Snaith, D. Cahen, Nat. Rev. Mater. 2019, 4, 269–285;
- 1fT. Liu, K. Chen, Q. Hu, R. Zhu, Q. Gong, Adv. Energy Mater. 2016, 6, 1600457.
- 2
- 2aG.-W. Kim, H. Choi, M. Kim, J. Lee, S. Y. Son, T. Park, Adv. Energy Mater. 2020, 10, 1903403;
- 2bL. Calió, S. Kazim, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 2016, 55, 14522–14545; Angew. Chem. 2016, 128, 14740–14764;
- 2cZ. H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T. M. Brown, R. Jose, Nano Energy 2017, 34, 271–305;
- 2dX. Yin, Z. Song, Z. Li, W. Tang, Energy Environ. Sci. 2020, 13, 4057–4086;
- 2eX. Sun, X. Yu, Z. A. Li, ACS Appl. Energy Mater. 2020, 3, 10282–10302;
- 2fJ. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotechnol. 2016, 11, 75–81;
- 2gS. A. Ok, B. Jo, S. Somasundaram, H. J. Woo, D. W. Lee, Z. Li, B.-G. Kim, J. H. Kim, Y. J. Song, T. K. Ahn, S. Park, H. J. Park, Nat. Commun. 2018, 9, 4537;
- 2hW. Zhou, Z. Wen, P. Gao, Adv. Energy Mater. 2018, 8, 1702512.
- 3
- 3aF. M. Rombach, S. A. Haque, T. J. Macdonald, Energy Environ. Sci. 2021, 14, 5161–5190;
- 3bM. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi, J. J. S. Lee, Science 2020, 369, 1615–1620.
- 4
- 4aH. D. Pham, T. T. Do, J. Kim, C. Charbonneau, S. Manzhos, K. Feron, W. C. Tsoi, J. R. Durrant, S. M. Jain, P. Sonar, Adv. Energy Mater. 2018, 8, 1703007;
- 4bZ. Yao, F. Zhang, Y. Guo, H. Wu, L. He, Z. Liu, B. Cai, Y. Guo, C. J. Brett, Y. Li, C. V. Srambickal, X. Yang, G. Chen, J. Widengren, D. Liu, J. M. Gardner, L. Kloo, L. Sun, J. Am. Chem. Soc. 2020, 142, 17681–17692;
- 4cE. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo, Nature 2019, 567, 511–515;
- 4dQ. Xiao, J. Tian, Q. Xue, J. Wang, B. Xiong, M. Han, Z. Li, Z. Zhu, H.-L. Yip, Z. A. Li, Angew. Chem. Int. Ed. 2019, 58, 17724–17730; Angew. Chem. 2019, 131, 17888–17894;
- 4eK. Jiang, J. Wang, F. Wu, Q. Xue, Q. Yao, J. Zhang, Y. Chen, G. Zhang, Z. Zhu, H. Yan, L. Zhu, H.-L. Yip, Angew. Chem. Int. Ed. 2020, 59, 1908011;
- 4fJ. Lee, G.-W. Kim, M. Kim, S. A. Park, T. Park, Adv. Energy Mater. 2020, 10, 1902662;
- 4gH. Zhu, Z. Shen, L. Pan, J. Han, F. T. Eickemeyer, Y. Ren, X. Li, S. Wang, H. Liu, X. Dong, S. M. Zakeeruddin, A. Hagfeldt, Y. Liu, M. Grätzel, ACS Energy Lett. 2021, 6, 208–215;
- 4hB. Li, K. Yang, Q. Liao, Y. Wang, M. Su, Y. Li, Y. Shi, X. Feng, J. Huang, H. Sun, X. Guo, Adv. Funct. Mater. 2021, 31, 2100332;
- 4iH. Guo, H. Zhang, C. Shen, D. Zhang, S. Liu, Y. Wu, W. H. Zhu, Angew. Chem. Int. Ed. 2021, 60, 2674–2679; Angew. Chem. 2021, 133, 2706–2711;
- 4jW. Zhang, L. Wan, X. Li, Y. Wu, S. Fu, J. Fang, J. Mater. Chem. A 2019, 7, 18898–18905;
- 4kJ. Zhang, Q. Sun, Q. Chen, Y. Wang, Y. Zhou, B. Song, N. Yuan, J. Ding, Y. Li, Adv. Funct. Mater. 2019, 29, 1900484;
- 4lD. Yang, T. Sano, Y. Yaguchi, H. Sun, H. Sasabe, J. Kido, Adv. Funct. Mater. 2019, 29, 1807556;
- 4mC. Shen, Y. Wu, H. Zhang, E. Li, W. Zhang, X. Xu, W. Wu, H. Tian, W.-H. Zhu, Angew. Chem. Int. Ed. 2019, 58, 3784–3789; Angew. Chem. 2019, 131, 3824–3829;
- 4nR. Shang, Z. Zhou, H. Nishioka, H. Halim, S. Furukawa, I. Takei, N. Ninomiya, E. Nakamura, J. Am. Chem. Soc. 2018, 140, 5018–5022;
- 4oJ. Liu, Y. Wu, C. Qin, X. Yang, T. Yasuda, A. Islam, K. Zhang, W. Peng, W. Chen, L. Han, Energy Environ. Sci. 2014, 7, 2963–2967;
- 4pN. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Grätzel, Science 2017, 358, 768–771;
- 4qZ. Zhang, L. Liang, L. Deng, L. Ren, N. Zhao, J. Huang, Y. Yu, P. Gao, ACS Appl. Mater. Interfaces 2021, 13, 6688–6698;
- 4rS. Paek, P. Qin, Y. Lee, K. T. Cho, P. Gao, G. Grancini, E. Oveisi, P. Gratia, K. Rakstys, S. A. Al-Muhtaseb, C. Ludwig, J. Ko, M. K. Nazeeruddin, Adv. Mater. 2017, 29, 1606555;
- 4sK. Rakstys, S. Paek, P. Gao, P. Gratia, T. Marszalek, G. Grancini, K. T. Cho, K. Genevicius, V. Jankauskas, W. Pisula, M. K. Nazeeruddin, J. Mater. Chem. A 2017, 5, 7811–7815;
- 4tF. Zhang, Z. Yao, Y. Guo, Y. Li, J. Bergstrand, C. J. Bertt, B. Cai, A. Hajian, Y. Guo, X. Yang, J. M. Gardner, J. Widengren, S. V. Roth, L. Kloo, L. Sun, J. Am. Chem. Soc. 2019, 141, 19700–19707.
- 5
- 5aH. Huang, L. Yang, A. Facchetti, T. J. Marks, Chem. Rev. 2017, 117, 10291–10318;
- 5bM. A. Uddin, T. H. Lee, S. Xu, S. Y. Park, T. Kim, S. Song, T. L. Nguyen, S.-j. Ko, S. Hwang, J. Y. Kim, H. Y. Woo, Chem. Mater. 2015, 27, 5997–6007;
- 5cX. Guo, F. S. Kim, S. A. Jenekhe, M. D. Watson, J. Am. Chem. Soc. 2009, 131, 7206–7207.
- 6
- 6aJ. Chen, Q. Liao, G. Wang, Z. Yan, H. Wang, Y. Wang, X. Zhang, Y. Tang, A. Facchetti, T. J. Marks, X. Guo, Macromolecules 2018, 51, 3874–3885;
- 6bX. Guo, Q. Liao, E. F. Manley, Z. Wu, Y. Wang, W. Wang, T. Yang, Y.-E. Shin, X. Cheng, Y. Liang, L. X. Chen, K.-J. Baeg, T. J. Marks, X. Guo, Chem. Mater. 2016, 28, 2449–2460;
- 6cX. Guo, J. Quinn, Z. Chen, H. Usta, Y. Zheng, Y. Xia, J. W. Hennek, R. P. Ortiz, T. J. Marks, A. Facchetti, J. Am. Chem. Soc. 2013, 135, 1986–1996;
- 6dY. Liu, Z. Zhang, S. Feng, M. Li, L. Wu, R. Hou, X. Xu, X. Chen, Z. Bo, J. Am. Chem. Soc. 2017, 139, 3356–3359;
- 6eS. Yum, T. K. An, X. Wang, W. Lee, M. A. Uddin, Y. J. Kim, T. L. Nguyen, S. Xu, S. Hwang, C. E. Park, H. Y. Woo, Chem. Mater. 2014, 26, 2147–2154;
- 6fM. Irimia-Vladu, Y. Kanbur, F. Camaioni, M. E. Coppola, C. Yumusak, C. V. Irimia, A. Vlad, A. Operamolla, G. M. Farinola, G. P. Suranna, N. González-Benitez, M. C. Molina, L. F. Bautista, H. Langhals, B. Stadlober, E. D. Głowacki, N. S. Sariciftci, Chem. Mater. 2019, 31, 6315–6346;
- 6gY. Shi, H. Guo, M. Qin, Y. Wang, J. Zhao, H. Sun, H. Wang, Y. Wang, X. Zhou, A. Facchetti, X. Lu, M. Zhou, X. Guo, Chem. Mater. 2018, 30, 7988–8001.
- 7W. J. Mullin, S. A. Sharber, S. W. Thomas III, J. Polym. Sci. Part A J. Polym. Sci. Part A J. Polym. Sci. 2021, 59, 1643–1663.
- 8
- 8aY. Liu, J. Song, Z. Bo, Chem. Commun. 2021, 57, 302–314;
- 8bL. Zhang, J. Wu, D. Li, W. Li, Q. Meng, Z. Bo, J. Mater. Chem. A 2019, 7, 14473–14477;
- 8cT. Chawanpunyawat, P. Funchien, P. Wongkaew, N. Henjongchom, A. Ariyarit, S. Ittisanronnachai, S. Namuangruk, R. Cheacharoen, T. Sudyoadsuk, F. Goubard, V. Promarak, ChemSusChem 2020, 13, 5058–5066.
- 9
- 9aY. Wang, Q. Liao, J. Chen, W. Huang, X. Zhuang, Y. Tang, B. Li, X. Yao, X. Feng, X. Zhang, M. Su, Z. He, T. J. Marks, A. Facchetti, X. Guo, J. Am. Chem. Soc. 2020, 142, 16632–16643;
- 9bY. Wang, W. Chen, L. Wang, B. Tu, T. Chen, B. Liu, K. Yang, C. W. Koh, X. Zhang, H. Sun, G. Chen, X. Feng, H. Y. Woo, A. B. Djurisic, Z. He, X. Guo, Adv. Mater. 2019, 31, 1902781;
- 9cN. Cai, F. Li, Y. Chen, R. Luo, T. Hu, F. Lin, S. M. Yiu, D. Liu, D. Lei, Z. Zhu, A. K. Jen, Angew. Chem. Int. Ed. 2021, 60, 20437–20442; Angew. Chem. 2021, 133, 20600–20605;
- 9dY. Chen, X. Xu, N. Cai, S. Qian, R. Luo, Y. Huo, S. W. Tsang, Adv. Energy Mater. 2019, 91901268;
- 9eK. Jiang, J. Wang, F. Wu, Q. Xue, Q. Yao, J. Zhang, Y. Chen, G. Zhang, Z. Zhu, H. Yan, L. Zhu, H. L. Yip, Adv. Mater. 2020, 32, 1908011;
- 9fY. Cao, Y. Li, T. Morrissey, B. Lam, B. O. Patrick, D. J. Dvorak, Z. Xia, T. L. Kelly, C. P. Berlinguette, Energy Environ. Sci. 2019, 12, 3502–3507;
- 9gJ. Zhang, Q. Sun, Q. Chen, Y. Wang, Y. Zhou, B. Song, X. Jia, Y. Zhu, S. Zhang, N. Yuan, J. Ding, Y. Li, Solar RRL 2020, 4, 1900421;
- 9hW. Chen, Y. Wang, B. Liu, Y. Gao, Z. Wu, Y. Shi, Y. Tang, K. Yang, Y. Zhang, W. Sun, X. Feng, F. Laquai, H. Y. Woo, A. B. Djurišić, X. Guo, Z. He, Sci. China Chem. 2021, 64, 41–51.
- 10J. Huang, Y. Tang, K. Gao, F. Liu, H. Guo, T. P. Russell, T. Yang, Y. Liang, X. Cheng, X. Guo, Macromolecules 2017, 50, 137–150.
- 11Z. A. Li, Z. Zhu, C.-C. Chueh, S. B. Jo, J. Luo, S.-H. Jang, A. K. Y. Jen, J. Am. Chem. Soc. 2016, 138, 11833–11839.
- 12B. Xu, E. Sheibani, P. Liu, J. B. Zhang, H. N. Tian, N. Vlachopoulos, G. Boschloo, L. Kloo, A. Hagfeldt, L. C. Sun, Adv. Mater. 2014, 26, 6629–6634.
- 13K. Wang, J. Liu, J. Yin, E. Aydin, G. T. Harrison, W. Liu, S. Chen, O. F. Mohammed, S. De Wolf, Adv. Funct. Mater. 2020, 30, 2002861.
- 14J. A. Schwenzer, T. Hellmann, B. A. Nejand, H. Hu, T. Abzieher, F. Schackmar, I. M. Hossain, P. Fassl, T. Mayer, W. Jaegermann, U. Lemmer, U. W. Paetzold, ACS Appl. Mater. Interfaces 2021, 13, 15292–15304.
- 15M. Heeney, P. Kafourou, B. Park, J. Luke, T. Luxi, J. Panidi, F. Glocklhofer, J. Kim, T. D. Anthopoulos, J. S. Kim, K. Lee, S. Kwon, Angew. Chem. Int. Ed. 2020, 59, 5970–5977.
- 16
- 16aT. Kirchartz, J. A. Márquez, M. Stolterfoht, T. Unold, Adv. Energy Mater. 2020, 10, 1904134;
- 16bO. Blaszczyk, L. Krishnan Jagadamma, A. Ruseckas, M. T. Sajjad, Y. Zhang, I. D. W. Samuel, Mater. Horiz. 2020, 7, 943–948.
- 17
- 17aF. Gao, Y. Zhao, X. Zhang, J. You, Adv. Energy Mater. 2020, 10, 1902650;
- 17bL. Deng, Z. Zhang, Y. Gao, Q. Xiong, Z. Li, J. Xu, Z. Zhang, J. Chen, P. Gao, Sustainable Energy Fuels 2021, 5, 2347–2353.
- 18L. Huo, Y. Zhou, Y. Li, Macromol. Rapid Commun. 2009, 30, 925–931.
- 19R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue, Y. Yang, Adv. Funct. Mater. 2019, 29, 1808843.