Fully Condensed Poly (Triazine Imide) Crystals: Extended π-Conjugation and Structural Defects for Overall Water Splitting
Minghui Liu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorChanggeng Wei
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorHangyu Zhuzhang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorJingmin Zhou
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorDr. Zhiming Pan
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorProf. Wei Lin
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorProf. Zhiyang Yu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Guigang Zhang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xinchen Wang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorMinghui Liu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorChanggeng Wei
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorHangyu Zhuzhang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorJingmin Zhou
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorDr. Zhiming Pan
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorProf. Wei Lin
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorProf. Zhiyang Yu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Guigang Zhang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xinchen Wang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorGraphical Abstract
A fully condensed poly (triazine imide) crystal, which features extended π-conjugation and deficient structural defects, decorated with Pt and CoOx as redox cocatalysts efficiently drives the one-step excitation overall water splitting for H2 and O2 production with a record apparent quantum efficiency of 12 % at 365 nm.
Abstract
Conventional polymerization for the synthesis of carbon nitride usually generates amorphous heptazine-based melon with an abundance of undesired structural defects, which function as charge carrier recombination centers to decrease the photocatalytic efficiency. Herein, a fully condensed poly (triazine imide) crystal with extended π-conjugation and deficient structure defects was obtained by conducting the polycondensation in a mild molten salt of LiCl/NaCl. The melting point of the binary LiCl/NaCl system is around 550 °C, which substantially restrain the depolymerization of triazine units and extend the π-conjugation. The optimized polymeric carbon nitride crystal exhibits a high apparent quantum efficiency of 12 % (λ=365 nm) for hydrogen production by one-step excitation overall water splitting, owing to the efficient exciton dissociation and the subsequent fast transfer of charge carriers.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202113389-sup-0001-misc_information.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109–2125;
- 1bX. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76–80.
- 2
- 2aX. G. Li, W. T. Bi, L. Zhang, S. Tao, W. S. Chu, Q. Zhang, Y. Luo, C. Z. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427–2431;
- 2bD. J. Martin, P. J. T. Reardon, S. J. A. Moniz, J. W. Tang, J. Am. Chem. Soc. 2014, 136, 12568–12571.
- 3
- 3aF. K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, X. C. Wang, M. J. Bojdys, Nat. Rev. Mater. 2017, 2, 17030;
- 3bX. J. Chen, R. Shi, Q. Chen, Z. J. Zhang, W. J. Jiang, Y. F. Zhu, T. R. Zhang, Nano Energy 2019, 59, 644–650.
- 4H. Y. Li, S. M. Chen, X. F. Jia, B. Xu, H. F. Lin, H. Z. Yang, L. Song, X. Wang, Nat. Commun. 2017, 8, 15377.
- 5M. J. Bojdys, J. O. Muller, M. Antonietti, A. Thomas, Chem. Eur. J. 2008, 14, 8177–8182.
- 6
- 6aF. K. Kessler, W. Schnick, Z. Anorg. Allg. Chem. 2019, 645, 857–862;
- 6bD. Dontsova, S. Pronkin, M. Wehle, Z. P. Chen, C. Fettkenhauer, G. Clavel, M. Antonietti, Chem. Mater. 2015, 27, 5170–5179.
- 7
- 7aE. Wirnhier, M. Doblinger, D. Gunzelmann, J. Senker, B. V. Lotsch, W. Schnick, Chem. Eur. J. 2011, 17, 3213–3221;
- 7bZ. P. Chen, A. Savateev, S. Pronkin, V. Papaefthimiou, C. Wolff, M. G. Willinger, E. Willinger, D. Neher, M. Antonietti, D. Dontsova, Adv. Mater. 2017, 29, 1700555.
- 8
- 8aZ. M. Pan, G. G. Zhang, X. C. Wang, Angew. Chem. Int. Ed. 2019, 58, 7102–7106; Angew. Chem. 2019, 131, 7176–7180;
- 8bE. J. McDermott, E. Wirnhier, W. Schnick, K. S. Virdi, C. Scheu, Y. Kauffmann, W. D. Kaplan, E. Z. Kurmaev, A. Moewes, J. Phys. Chem. C 2013, 117, 8806–8812.
- 9Y. Ham, K. Maeda, D. Cha, K. Takanabe, K. Domen, Chem. Asian J. 2013, 8, 218–224.
- 10
- 10aK. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, B. V. Lotsch, Angew. Chem. Int. Ed. 2013, 52, 2435–2439; Angew. Chem. 2013, 125, 2495–2499;
- 10bM. K. Bhunia, K. Yamauchi, K. Takanabe, Angew. Chem. Int. Ed. 2014, 53, 11001–11005; Angew. Chem. 2014, 126, 11181–11185.
- 11L. H. Lin, Z. Y. Lin, J. Zhang, X. Cai, W. Lin, Z. Y. Yu, X. C. Wang, Nat. Catal. 2020, 3, 649–655.
- 12J. Wang, C. L. Liu, J. Mol. Liq. 2019, 273, 447–454.
- 13
- 13aY. Noda, C. Merschjann, J. Tarabek, P. Amsalem, N. Koch, M. J. Bojdys, Angew. Chem. Int. Ed. 2019, 58, 9394–9398; Angew. Chem. 2019, 131, 9494–9498;
- 13bT. T. Zhao, Q. Zhou, Y. Q. Lv, D. Han, K. Q. Wu, L. F. Zhao, Y. F. Shen, S. Q. Liu, Y. J. Zhang, Angew. Chem. Int. Ed. 2020, 59, 1139–1143; Angew. Chem. 2020, 132, 1155–1159.
- 14T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2014, 53, 7281–7285; Angew. Chem. 2014, 126, 7409–7413.
- 15M. B. Mesch, K. Barwinkel, Y. Krysiak, C. Martineau, F. Taulelle, R. B. Neder, U. Kolb, J. Senker, Chem. Eur. J. 2016, 22, 16876–16878.
- 16D. M. Zhao, C. L. Dong, B. Wang, C. Chen, Y. C. Huang, Z. D. Diao, S. Z. Li, L. J. Guo, S. H. Shen, Adv. Mater. 2019, 31, 1903545.
- 17
- 17aC. Lv, Y. M. Qian, C. S. Yan, Y. Ding, Y. Y. Liu, G. Chen, G. H. Yu, Angew. Chem. Int. Ed. 2018, 57, 10246–10250; Angew. Chem. 2018, 130, 10403–10407;
- 17bB. G. Wu, L. P. Zhang, B. J. Jiang, Q. Li, C. G. Tian, Y. Xie, W. Z. Li, H. G. Fu, Angew. Chem. Int. Ed. 2021, 60, 4815–4822; Angew. Chem. 2021, 133, 4865–4872.
- 18
- 18aP. J. Yang, H. Y. Zhuzhang, R. R. Wang, W. Lin, X. C. Wang, Angew. Chem. Int. Ed. 2019, 58, 1134–1137; Angew. Chem. 2019, 131, 1146–1149;
- 18bF. Tuomisto, I. Makkonen, Rev. Mod. Phys. 2013, 85, 1583–1631.
- 19
- 19aH. Wang, S. Jin, X. D. Zhang, Y. Xie, Angew. Chem. Int. Ed. 2020, 59, 22828–22839; Angew. Chem. 2020, 132, 23024–23035;
- 19bY. Wang, X. Q. Liu, J. Liu, B. Han, X. Q. Hu, F. Yang, Z. W. Xu, Y. C. Li, S. R. Jia, Z. Li, Y. L. Zhao, Angew. Chem. Int. Ed. 2018, 57, 5765–5771; Angew. Chem. 2018, 130, 5867–5873.
- 20Y. S. Xu, C. T. Qiu, X. Fan, Y. H. Xiao, G. Q. Zhang, K. Y. Yu, H. N. Karjule, C. Singh, J. Barrio, J. Tzadikov, I. Liberman, M. Volokh, E. Palomares, I. Hod, M. Shalom, Adv. Funct. Mater. 2021, 31, 2101724.