Two-Dimensional Fluorinated Covalent Organic Frameworks with Tunable Hydrophobicity for Ultrafast Oil–Water Separation
Yuhao Liu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
These authors contributed equally to the work.
Search for more papers by this authorWei Li
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200241 China), .
These authors contributed equally to the work.
Search for more papers by this authorChen Yuan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
Search for more papers by this authorLei Jia
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
Search for more papers by this authorProf. Yan Liu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
Search for more papers by this authorCorresponding Author
Prof. Aisheng Huang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200241 China), .
Search for more papers by this authorCorresponding Author
Prof. Yong Cui
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
Search for more papers by this authorYuhao Liu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
These authors contributed equally to the work.
Search for more papers by this authorWei Li
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200241 China), .
These authors contributed equally to the work.
Search for more papers by this authorChen Yuan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
Search for more papers by this authorLei Jia
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
Search for more papers by this authorProf. Yan Liu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
Search for more papers by this authorCorresponding Author
Prof. Aisheng Huang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200241 China), .
Search for more papers by this authorCorresponding Author
Prof. Yong Cui
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China), .
Search for more papers by this authorGraphical Abstract
Three 2D robust COFs with controllable hydrophobicity and processability were synthesized by introducing mixed hydrophobic substituents. After coating on a stainless-steel net (SSN) substrate, the superhydrophobic COF@SSN coating exhibits an excellent oil/water separation efficiency (>99.5 %), high oil-permeation flux (2.84±0.08)×105 L m−2 h−1, high water-pressure resistance (>15 kPa), and a high degree of reusability (>50 cycles).
Abstract
Covalent organic frameworks (COFs) hold great potentials for addressing the challenge of highly efficient oil–water separation, but they are restricted by the poor wettability and processability as crystalline membranes. Here we report the design and synthesis of two-dimensional (2D) robust COFs with controllable hydrophobicity and processability, allowing the COF layers to be directly grown on the support surfaces. Three 2D COFs with AA or ABC stacking are prepared by condensation of triamines with fluorine and/or isopropyl groups and perfluorodialdehyde. They all show excellent tolerance to water, acid, and base, with water contact angles (CA) of 111.5–145.8°. The two COFs with isopropyl and fluorine mixtures can grow as a coating on a stainless-steel net (SSN) substrate, whereas the one with only fluorine substituents cannot. The superhydrophobic COF@SSN coating with water CA of up to 150.1° displays high water-resistance and self-cleaning properties, enabling high oil–water separation performances with an efficiency of over 99.5 % and a permeation flux of 2.84×105 L m−2 h−1, which are among the highest values reported for state-of-the-art membranes.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202113348-sup-0001-cif.zip4.1 KB | Supporting Information |
anie202113348-sup-0001-misc_information.pdf4.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Cherukupally, W. Sun, A. P. Y. Wong, D. R. Williams, G. A. Ozin, A. M. Bilton, C. B. Park, Nat. Sustainability 2020, 3, 136–143.
- 2B. Liang, H. Wang, X. Shi, B. Shen, X. He, Z. A. Ghazi, N. A. Khan, H. Sin, A. M. Khattak, L. Li, Z. Tang, Nat. Chem. 2018, 10, 961–967.
- 3B. Wang, W. Liang, Z. Guo, W. Liu, Chem. Soc. Rev. 2015, 44, 336–361.
- 4S. Karan, Z. Jiang, A. G. Livingston, Science 2015, 348, 1347–1351.
- 5
- 5aR. Ou, J. Wei, L. Jiang, G. P. Simon, H. Wang, Environ. Sci. Technol. 2016, 50, 906–914;
- 5bM. Liu, Y. Luo, D. Jia, Polym. Chem. 2020, 11, 2370–2380.
- 6
- 6aA. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170;
- 6bA. M. Evans, L. R. Parent, N. C. Flanders, R. P. Bisbey, E. Vitaku, M. S. Kirschner, R. D. Schaller, L. X. Chen, N. C. Gianneschi, W. R. Dichtel, Science 2018, 361, 52–57;
- 6cX. Han, C. Yuan, B. Hou, L. Liu, H. Li, Y. Liu, Y. Cui, Chem. Soc. Rev. 2020, 49, 6248–6272.
- 7
- 7aY. Xie, J. Li, C. Lin, B. Gui, C. Ji, D. Yuan, J. Sun, C. Wang, J. Am. Chem. Soc. 2021, 143, 7279–7284;
- 7bQ. Sun, C.-W. Fu, B. Aguila, J. Perman, S. Wang, H.-Y. Huang, F.-S. Xiao, S. Ma, J. Am. Chem. Soc. 2018, 140, 984–992;
- 7cL. Ascherl, T. Sick, J. T. Margraf, S. H. Lapidus, M. Calik, C. Hettstedt, K. Karaghiosoff, M. Döblinger, T. Clark, K. W. Chapman, F. Auras, T. Bein, Nat. Chem. 2016, 8, 310–316;
- 7dS. Karak, S. Kumar, P. Pachfule, R. Banerjee, J. Am. Chem. Soc. 2018, 140, 5138–5145.
- 8
- 8aY. Ying, M. Tong, S. Ning, S. K. Ravi, S. B. Peh, S. C. Tan, S. J. Pennycook, D. Zhao, J. Am. Chem. Soc. 2020, 142, 4472–4480;
- 8bJ. Fu, S. Das, G. Xing, T. Ben, V. Valtchev, S. Qiu, J. Am. Chem. Soc. 2016, 138, 7673–7680;
- 8cH. Fan, M. Peng, I. Strauss, A. Mundstock, H. Meng, J. Caro, J. Am. Chem. Soc. 2020, 142, 6872–6877;
- 8dN. A. Khan, R. Zhang, H. Wu, J. Shen, J. Yuan, C. Fan, L. Cao, M. A. Olson, Z. Jiang, J. Am. Chem. Soc. 2020, 142, 13450–13458;
- 8eH. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875–8883;
- 8fJ. Huang, X. Han, S. Yang, Y. Cao, C. Yuan, Y. Liu, J. Wang, Y. Cui, J. Am. Chem. Soc. 2019, 141, 8996–9003.
- 9
- 9aC. R. DeBlase, K. E. Silberstein, T.-T. Truong, H. D. Abruña, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821–16824;
- 9bJ. Lv, Y.-X. Tan, J. Xie, R. Yang, M. Yu, S. Sun, M.-D. Li, D. Yuan, Y. Wang, Angew. Chem. Int. Ed. 2018, 57, 12716–12720; Angew. Chem. 2018, 130, 12898–12902;
- 9cJ. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 2020, 49, 3565–3604;
- 9dF. Xu, H. Xu, X. Chen, D. Wu, Y. Wu, H. Liu, C. Gu, R. Fu, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 6814–6818; Angew. Chem. 2015, 127, 6918–6922.
- 10N. Keller, T. Bein, Chem. Soc. Rev. 2021, 50, 1813–1845.
- 11
- 11aS.-Y. Ding, M. Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2016, 138, 3031–3037;
- 11bC. Yuan, S. Fu, K. Yang, B. Hou, Y. Liu, J. Jiang, Y. Cui, J. Am. Chem. Soc. 2021, 143, 369–381.
- 12
- 12aS. Lu, Y. Hu, S. Wan, R. McCaffrey, Y. Jin, H. Gu, W. Zhang, J. Am. Chem. Soc. 2017, 139, 17082–17088;
- 12bM. Bhadra, S. Kandambeth, M. K. Sahoo, M. Addicoat, E. Balaraman, R. Banerjee, J. Am. Chem. Soc. 2019, 141, 6152–6156;
- 12cX. Wang, X. Han, J. Zhang, X. Wu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2016, 138, 12332–12335;
- 12dS. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208–1213.
- 13
- 13aX. Wu, Y.-l. Hong, B. Xu, Y. Nishiyama, W. Jiang, J. Zhu, G. Zhang, S. Kitagawa, S. Horike, J. Am. Chem. Soc. 2020, 142, 14357–14364;
- 13bQ. Sun, B. Aguila, J. A. Perman, T. Butts, F.-S. Xiao, S. Ma, Chem 2018, 4, 1726–1739.
- 14S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde, B. Van der Bruggen, Chem. Soc. Rev. 2019, 48, 2665–2681.
- 15
- 15aN. Han, Z. Zhang, H. Gao, Y. Qian, L. Tan, C. Yang, H. Zhang, Z. Cui, W. Li, X. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 2926–2934;
- 15bY. Jiang, C. Liu, Y. Li, A. Huang, J. Membr. Sci. 2019, 587, 117177.
- 16
- 16aX. Li, J. Guo, R. Tong, P. D. Topham, J. Wang, React. Funct. Polym. 2018, 130, 126–132;
- 16bZ. Xiao, M. Zhang, W. Fan, Y. Qian, Z. Yang, B. Xu, Z. Kang, R. Wang, D. Sun, Chem. Eng. J. 2017, 326, 640–646;
- 16cP. Mu, H. Sun, J. Zang, Z. Zhu, W. Liang, F. Yu, L. Chen, A. Li, React. Funct. Polym. 2016, 106, 105–111.
- 17
- 17aK. Jayaramulu, F. Geyer, A. Schneemann, Š. Kment, M. Otyepka, R. Zboril, D. Vollmer, R. A. Fischer, Adv. Mater. 2019, 31, 1900820;
- 17bX. Zhang, Y. Zhao, S. Mu, C. Jiang, M. Song, Q. Fang, M. Xue, S. Qiu, B. Chen, ACS Appl. Mater. Interfaces 2018, 10, 17301–17308;
- 17cC. Ma, Y. Li, P. Nian, H. Liu, J. Qiu, X. Zhang, Sep. Purif. Technol. 2019, 229, 115835.
- 18X. Wu, X. Han, Y. Liu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2018, 140, 16124–16133.
- 19
- 19aD. B. Shinde, G. Sheng, X. Li, M. Ostwal, A.-H. Emwas, K.-W. Huang, Z. Lai, J. Am. Chem. Soc. 2018, 140, 14342–14349;
- 19bH. Fan, A. Mundstock, A. Feldhoff, A. Knebel, J. Gu, H. Meng, J. Caro, J. Am. Chem. Soc. 2018, 140, 10094–10098.
- 20
- 20aM. Joo, J. Shin, J. Kim, J. B. You, Y. Yoo, M. J. Kwak, M. S. Oh, S. G. Im, J. Am. Chem. Soc. 2017, 139, 2329–2337;
- 20bA. Mähringer, M. Hennemann, T. Clark, T. Bein, D. D. Medina, Angew. Chem. Int. Ed. 2021, 60, 5519–5526; Angew. Chem. 2021, 133, 5579–5586.
- 21
- 21aY. Cai, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, ACS Sustainable Chem. Eng. 2019, 7, 2709–2717;
- 21bJ. Zhu, F. Zhao, T. Peng, H. Liu, L. Xie, C. Jiang, Surf. Coat. Technol. 2020, 402, 126344.
- 22
- 22aH.-H. Tseng, J.-C. Wu, Y.-C. Lin, G.-L. Zhuang, J. Membr. Sci. 2018, 559, 148–158;
- 22bJ. Gu, P. Xiao, J. Chen, F. Liu, Y. Huang, G. Li, J. Zhang, T. Chen, J. Mater. Chem. A 2014, 2, 15268–15272.
- 23
- 23aM. He, R. Zhang, K. Zhang, Y. Liu, Y. Su, Z. Jiang, J. Mater. Chem. A 2019, 7, 11468–11477;
- 23bN. Liu, M. Zhang, W. Zhang, Y. Cao, Y. Chen, X. Lin, L. Xu, C. Li, L. Feng, Y. Wei, J. Mater. Chem. A 2015, 3, 20113–20117.