Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening
Dr. Yuewei Zhang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jinbei Wei
Beijing National Laboratory for molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Dongdong Zhang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorChen Yin
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGuomeng Li
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorZiyang Liu
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiaoqin Jia
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorProf. Juan Qiao
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lian Duan
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Yuewei Zhang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jinbei Wei
Beijing National Laboratory for molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Dongdong Zhang
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorChen Yin
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGuomeng Li
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorZiyang Liu
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiaoqin Jia
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorProf. Juan Qiao
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lian Duan
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGraphical Abstract
Sterically wrapped multiple resonance (MR) dopants with the MR-core sandwiched by bulk substituents have been developed to suppress molecular interactions, realizing organic light-emitting diodes with remarkably high maximum external quantum efficiencies of 36.3–37.2 %, identical small FWHMs of 24 nm and alleviated efficiency roll-offs over a wide range of dopant concentrations (1–20 wt %).
Abstract
Multiple resonance (MR) emitters are promising for highly efficient organic light-emitting diodes (OLEDs) with narrowband emission; however, they still face intractable challenges with concentration-caused emission quenching, exciton annihilation, and spectral broadening. In this study, sterically wrapped MR dopants with a fluorescent MR core sandwiched by bulk substituents were developed to address the intractable challenges by reducing intermolecular interactions. Consequently, high photo-luminance quantum yields of ≥90 % and small full width at half maximums (FWHMs) of ≤25 nm over a wide range of dopant concentrations (1–20 wt %) were recorded. In addition, we demonstrated that the sandwiched MR emitter can effectively suppress Dexter interaction when doped in a thermally activated delayed fluorescence sensitizer, eliminating exciton loss through dopant triplet. Within the above dopant concentration range, the optimal emitter realizes remarkably high maximum external quantum efficiencies of 36.3–37.2 %, identical small FWHMs of 24 nm, and alleviated efficiency roll-offs in OLEDs.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202113206-sup-0001-misc_information.pdf3.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781;
- 1bY. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678;
- 1cY. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu, L. Duan, Angew. Chem. Int. Ed. 2019, 58, 16912; Angew. Chem. 2019, 131, 17068;
- 1dY. Zhang, D. Zhang, J. Wei, X. Hong, Y. Lu, D. Hu, G. Li, Z. Liu, Y. Chen, L. Duan, Angew. Chem. Int. Ed. 2020, 59, 17499; Angew. Chem. 2020, 132, 17652;
- 1eY. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 20498–20503; Angew. Chem. 2021, 133, 20661–20666;
- 1fY. Xu, C. Li, Z. Li, Q. Wang, X. Cai, J. Wei, Y. Wang, Angew. Chem. Int. Ed. 2020, 59, 17442; Angew. Chem. 2020, 132, 17595;
- 1gM. Yang, I. S. Park, T. Yasuda, J. Am. Chem. Soc. 2020, 142, 19468.
- 2
- 2aS. Nakatsuka, H. Gotoh, K. Kinoshita, N. Yasuda, T. Hatakeyama, Angew. Chem. Int. Ed. 2017, 56, 5087; Angew. Chem. 2017, 129, 5169;
- 2bX. Liang, Z.-P. Yan, H.-B. Han, Z.-G. Wu, Y.-X. Zheng, H. Meng, J.-L. Zuo, W. Huang, Angew. Chem. Int. Ed. 2018, 57, 11316–11320; Angew. Chem. 2018, 130, 11486–11490;
- 2cK. Matsui, S. Oda, K. Yoshiura, K. Nakajima, N. Yasuda, T. Hatakeyama, J. Am. Chem. Soc. 2018, 140, 1195–1198;
- 2dJ. A. Knöller, G. Meng, X. Wang, D. Hall, A. Pershin, D. Beljonne, Y. Olivier, S. Laschat, E. Zysman-Colman, S. Wang, Angew. Chem. Int. Ed. 2020, 59, 3156–3160; Angew. Chem. 2020, 132, 3181–3185;
- 2eM. Nagata, H. Min, E. Watanabe, H. Fukumoto, Y. Mizuhata, N. Tokitoh, T. Agou, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 20280–20285; Angew. Chem. 2021, 133, 20442–20447;
- 2fY. Liu, X. Xiao, Y. Ran, Z. Bin, J. You, Chem. Sci. 2021, 12, 9408;
- 2gH. Tanaka, S. Oda, G. Ricci, H. Gotoh, K. Tabata, R. Kawasumi, D. Beljonne, Y. Olivier, T. Hatakeyama, Angew. Chem. Int. Ed. 2021, 60, 17910; Angew. Chem. 2021, 133, 18054;
- 2hY. Qi, W. Ning, Y. Zou, X. Cao, S. Gong, C. Yang, Adv. Funct. Mater. 2021, 31, 2102017.
- 3
- 3aY. Yuan, X. Tang, X.-Y. Du, Y. Hu, Y.-J. Yu, Z.-Q. Jiang, L.-S. Liao, S.-T. Lee, Adv. Opt. Mater. 2019, 7, 1801536;
- 3bX. Li, Y.-Z. Shi, K. Wang, M. Zhang, C.-J. Zheng, D.-M. Sun, G.-L. Dai, X.-C. Fan, D.-Q. Wang, W. Liu, Y.-Q. Li, J. Yu, X.-M. Ou, C. Adachi, X.-H. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 13472;
- 3cD. Hall, S. M. Suresh, P. L. dos Santos, E. Duda, S. Bagnich, A. Pershin, P. Rajamalli, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, A. Köhler, I. D. W. Samuel, Y. Olivier, E. Zysman-Colman, Adv. Opt. Mater. 2020, 8, 1901627;
- 3dH. L. Lee, W. J. Chung, J. Y. Lee, Small 2020, 16, 1907569.
- 4
- 4aS. Madayanad Suresh, D. Hall, D. Beljonne, Y. Olivier, E. Z. -Colman, Adv. Funct. Mater. 2020, 1908677;
- 4bH. Jiang, Y. Cao, Q. Yang, L. Xian, Y. Tao, R. Chen, W. Huang, J. Phys. Chem. Lett. 2020, 11, 7739–7754.
- 5
- 5aM. A. Baldo, M. E. Thompson, S. R. Forrest, Nature 2000, 403, 750;
- 5bD. Zhang, L. Duan, C. Li, Y. Li, H. Li, D. Zhang, Y. Qiu, Adv. Mater. 2014, 26, 5050–5055;
- 5cH. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun. 2014, 5, 4016.
- 6
- 6aS. H. Han, J. H. Jeong, J. W. Yoob, J. Y. Lee, J. Mater. Chem. C 2019, 7, 3082;
- 6bC. Yin, D. Zhang, Y. Zhang, Y. Lu, R. Wang, G. Li, L. Duan, CCS Chem. 2020, 2, 1268–1277;
- 6cD. Zhang, X. Song, A. J. Gillett, B. H. Drummond, S. T. E. Jones, G. Li, H. He, M. Cai, D. Credgington, L. Duan, Adv. Mater. 2020, 32, 1908355;
- 6dS. O. Jeon, K. H. Lee, J. S. Kim, S.-G. Ihn, Y. S. Chung, J. W. Kim, H. Lee, S. Kim, H. Choi, J. Y. Lee, Nat. Photonics 2021, 15, 208;
- 6eJ. Wei, C. Zhang, D. Zhang, Y. Zhang, Z. Liu, Z. Li, G. Yu, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 12269; Angew. Chem. 2021, 133, 12377;
- 6fS. Nam, J. W. Kim, H. J. Bae, Y. M. Maruyama, D. Jeong, J. Kim, J. S. Kim, W.-J. Son, H. Jeong, J. Lee, S.-G. Ihn, H. Choi, Adv. Sci. 2021, 8, 2100586.
- 7
- 7aK. H. Lee, J. Y. Lee, J. Mater. Chem. C 2019, 7, 8562;
- 7bT. B. Nguyen, H. Nakanotani, T. Hatakeyama, C. Adachi, Adv. Mater. 2020, 32, 1906614;
- 7cC.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Nat. Photonics 2021, 15, 203;
- 7dW. J. Chung, K. H. Lee, M. Jung, K. M. Lee, H. C. Park, M.-S. Eum, J. Y. Lee, Adv. Opt. Mater. 2021, 9, 2100203;
- 7eY. Xu, Z. Cheng, Z. Li, B. Liang, J. Wang, J. Wei, Z. Zhang, Y. Wang, Adv. Opt. Mater. 2020, 8, 1902142.
- 8K. Stavrou, A. Danos, T. Hama, T. Hatakeyama, A. Monkman, ACS Appl. Mater. Interfaces 2021, 13, 8643–8655.
- 9
- 9aD. D. Zhang, X. Z. Song, M. H. Cai, L. Duan, Adv. Mater. 2018, 30, 1705250;
- 9bX. Song, D. Zhang, Y. Zhang, Y. Lu, L. Duan, Adv. Opt. Mater. 2020, 8, 2000483;
- 9cP. C. Wei, D. D. Zhang, L. Duan, Adv. Funct. Mater. 2020, 30, 1907083.
- 10D. D. Zhang, M. H. Cai, Y. G. Zhang, D. Q. Zhang, L. Duan, Mater. Horiz. 2016, 3, 145.
- 11J. Lee, N. Aizawa, M. Numata, C. Adachi, T. Yasuda, Adv. Mater. 2017, 29, 1604856.
- 12Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka, H. Kaji, Nat. Photonics 2020, 14, 643–649.
- 13B. W. D′Andrade, M. A. Baldo, C. Adachi, J. Brooks, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 1045–1047.
- 14N. Aizawa, S. Shikita, T. Yasuda, Chem. Mater. 2017, 29, 7014.
- 15C. F. Wu, Y. L. Zheng, C. Szymanski, J. McNeill, J. Phys. Chem. C 2008, 112, 1772.
- 16D. L. Dexter, J. Chem. Phys. 1953, 21, 836.
- 17H. Sasabe, N. Toyota, H. Nakanishi, T. Ishizaka, Y.-J. Pu, J. Kido, Adv. Mater. 2012, 24, 3212–3217.
- 18C. Cai, S.-J. Su, T. Chiba, H. Sasabe, Y.-J. Pu, K. Nakayama, J. Kido, Jpn. J. Appl. Phys. 2011, 50, 040204.
- 19D. D. Zhang, J. Qiao, D. Zhang, L. Duan, Adv. Mater. 2017, 29, 1702847.
- 20
- 20aM. Godumala, S. Choi, M. J. Choa, D. H. Choi, J. Mater. Chem. C 2019, 7, 2172–2198;
- 20bJ. Teng, Y. Wang, C. Chen, J. Mater. Chem. C 2020, 8, 11340–11353;
- 20cI. S. Park, K. Matsuo, N. Aizawa, T. Yasuda, Adv. Funct. Mater. 2018, 28, 1802031;
- 20dG. Xia, C. Qu, Y. Zhu, J. Ye, K. Ye, Z. Zhang, Y. Wang, Angew. Chem. Int. Ed. 2021, 60, 9598–9603; Angew. Chem. 2021, 133, 9684–9689;
- 20eH. Wu, X. Song, B. Zhang, Z. Wang, T. Zhang, A. Qin, B. Z. Tang, Mater. Chem. Front. 2020, 4, 1706–1713;
- 20fX. Qiu, Y. Xu, C. Wang, M. Hanif, J. Zhou, C. Zeng, Y. Li, Q. Jiang, R. Zhao, D. Hu, Y. Ma, J. Mater. Chem. C 2019, 7, 5461–5467.