Eutectic Crystallization Activates Solid-State Zinc-Ion Conduction
Huayu Qiu
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
These authors contributed equally to this work.
Search for more papers by this authorRongxiang Hu
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiaofan Du
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
These authors contributed equally to this work.
Search for more papers by this authorZhou Chen
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorCorresponding Author
Dr. Jingwen Zhao
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorGuoli Lu
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorMeifang Jiang
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorProf. Qingyu Kong
Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192 Gif-sur-Yvette Cedex, France
Search for more papers by this authorYiyuan Yan
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorJunzhe Du
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorCorresponding Author
Prof. Xinhong Zhou
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Prof. Guanglei Cui
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorHuayu Qiu
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
These authors contributed equally to this work.
Search for more papers by this authorRongxiang Hu
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiaofan Du
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
These authors contributed equally to this work.
Search for more papers by this authorZhou Chen
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorCorresponding Author
Dr. Jingwen Zhao
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorGuoli Lu
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorMeifang Jiang
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorProf. Qingyu Kong
Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192 Gif-sur-Yvette Cedex, France
Search for more papers by this authorYiyuan Yan
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorJunzhe Du
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorCorresponding Author
Prof. Xinhong Zhou
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Prof. Guanglei Cui
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorGraphical Abstract
Here, we discovered a novel crystallized Zn2+ conductor based on inducing crystallization of high-entropy, charge-separated eutectic liquids. To the best of our knowledge, it is the first introduction of the concept of a crystallized eutectic material to achieve dramatically enhanced multivalent-ion transport properties. This facile strategy may also open up opportunities for designing a wide variety of new solid ionic conductors.
Abstract
Solid-state zinc (Zn) batteries offer a new candidate for emerging applications sensitive to volume, safety and cost. However, current solid polymeric or ceramic electrolyte structures remain poorly conductive for the divalent Zn2+, especially at room temperature. Constructing a heterogeneous interface which allows Zn2+ percolation is a viable option, but this is rarely involved in multivalent systems. Herein, we construct a solid Zn2+-ion conductor by inducing crystallization of tailored eutectic liquids formed by organic Zn salts and bipolar ligands. High-entropy eutectic-networks weaken the ion-association and form interfacial Zn2+-percolated channels on the nucleator surfaces, resulting in a solid crystal with exceptional selectivity for Zn2+ transport (t
=0.64) and appreciable Zn2+ conductivity (σ
=3.78×10−5 S cm−1 at 30 °C, over 2 orders of magnitude higher than conventional polymers), and finally enabling practical ambient-temperature Zn/V2O5 metal solid cells. This design principle leveraged by the eutectic solidification affords new insights on the multivalent solid electrochemistry suffering from slow ion migration.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202113086-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
anie202113086-sup-0001-Video_1.mp417.8 MB | Supporting Information |
anie202113086-sup-0001-Video_2.mp424.9 MB | Supporting Information |
anie202113086-sup-0001-Video_3.mp445 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nat. Mater. 2015, 14, 1026–1031;
- 1bY. Li, J. Fu, C. Zhong, T. Wu, Z. Chen, W. Hu, K. Amine, J. Lu, Adv. Energy Mater. 2019, 9, 1802605;
- 1cA. T. Kutbee, R. R. Bahabry, K. O. Alamoudi, M. T. Ghoneim, M. D. Cordero, A. S. Almuslem, A. Gumus, E. M. Diallo, J. M. Nassar, A. M. Hussain, N. M. Khashab, M. M. Hussain, npj Flexible Electron. 2017, 1, 7.
- 2H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Nat. Commun. 2019, 10, 1–12.
- 3
- 3aM. J. C. Plancha, C. M. Rangel, C. A. C. de Sequeira, J. Solid State Electrochem. 2012, 16, 665–671;
- 3bY. Zhang, Z. Chen, H. Qiu, W. Yang, Z. Zhao, J. Zhao, G. Cui, NPG Asia Mater. 2020, 12, 4.
- 4D.-M. Shin, J. E. Bachman, M. K. Taylor, J. Kamcev, J. G. Park, M. E. Ziebel, E. Velasquez, N. N. Jarenwattananon, G. K. Sethi, Y. Cui, J. R. Long, Adv. Mater. 2020, 32, 1905771.
- 5Z. Guo, T. Wang, H. Wei, Y. Long, C. Yang, D. Wang, J. Lang, K. Huang, N. Hussain, C. Song, Angew. Chem. Int. Ed. 2019, 58, 12569–12573; Angew. Chem. 2019, 131, 12699–12703.
- 6J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao, H. Qiu, S. Dong, X. Zhou, G. Cui, L. Chen, Nano Energy 2019, 57, 625–634.
- 7
- 7aO. S. Hammond, D. T. Bowron, A. J. Jackson, T. Arnold, A. Sanchez-Fernandez, N. Tsapatsaris, V. Garcia Sakai, K. J. Edler, J. Phys. Chem. B 2017, 121, 7473–7483;
- 7bZ. Chen, T. L. Greaves, G. G. Warr, R. Atkin, Chem. Commun. 2017, 53, 2375–2377;
- 7cD. Reuter, C. Binder, P. Lunkenheimer, A. Loidl, Phys. Chem. Chem. Phys. 2019, 21, 6801–6809.
- 8
- 8aG. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, A. Michaelides, Chem. Rev. 2016, 116, 7078–7116;
- 8bJ. D. Stevenson, P. G. Wolynes, J. Phys. Chem. A 2011, 115, 3713–3719.
- 9B. Han, J. C. Bischof, Cryobiology 2004, 48, 8–21.
- 10
- 10aK. Shahbaz, I. AlNashef, R. Lin, M. Hashim, F. Mjalli, M. Farid, Sol. Energy Mater. Sol. Cells 2016, 155, 147–154;
- 10bX. Zhang, F. Xie, Z. Pen, Y. Zhang, Y. Zhang, W. Zhou, Eur. Polym. J. 2002, 38, 1–6;
- 10cA. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, Renewable Sustainable Energy Rev. 2009, 13, 318–345.
- 11W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, ACS Nano 2016, 10, 11407–11413.
- 12
- 12aS. Shimano, H. Zhou, I. Honma, Chem. Mater. 2007, 19, 5216–5221;
- 12bY. Lu, K. Korf, Y. Kambe, Z. Tu, L. A. Archer, Angew. Chem. Int. Ed. 2014, 53, 488–492; Angew. Chem. 2014, 126, 498–502.
- 13R. Elliott in Cast Iron Technology (Ed.: R. Elliott), Butterworth-Heinemann, 1988, pp. 91–125.
- 14R. E. Smallman, A. H. W. Ngan in Modern Physical Metallurgy, 8th ed. (Eds.: R. E. Smallman, A. H. W. Ngan), Butterworth-Heinemann, Oxford, 2014, pp. 93–119.
10.1016/B978-0-08-098204-5.00003-1 Google Scholar
- 15M. Rezvani, Iran. J. Mater. Sci. Eng. 2011, 8, 41–49.
- 16T. Hanawa in Titanium in Medical and Dental Applications (Eds.: F. H. Froes, M. Qian), Woodhead Publishing, Sawston, 2018, pp. 95–113.
10.1016/B978-0-12-812456-7.00005-6 Google Scholar
- 17D. Lin, P. Y. Yuen, Y. Liu, W. Liu, N. Liu, R. H. Dauskardt, Y. Cui, Adv. Mater. 2018, 30, 1802661.
- 18F.-M. Wang, J.-H. Cheng, B.-J. Hwang, R. Santhanam, J. Solid State Electrochem. 2012, 16, 157–163.
- 19
- 19aR. Chen, W. Qu, J. Qian, N. Chen, Y. Dai, C. Guo, Y. Huang, L. Li, F. Wu, J. Mater. Chem. A 2017, 5, 24677–24685;
- 19bC. Hu, Y. Shen, M. Shen, X. Liu, H. Chen, C. Liu, T. Kang, F. Jin, L. Li, J. Li, Y. Li, N. Zhao, X. Guo, W. Lu, B. Hu, L. Chen, J. Am. Chem. Soc. 2020, 142, 18035–18041.
- 20
- 20aM. J. Plancha, C. M. Rangel, C. A. C. Sequeira, M. J. Hudson, J. Appl. Electrochem. 1997, 27, 1290–1296;
- 20bS. Karan, T. B. Sahu, M. Sahu, Y. K. Mahipal, R. C. Agrawal, Ionics 2017, 23, 2721–2726.
- 21P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, Nat. Mater. 2004, 3, 476–481.
- 22
- 22aF. Wu, G. Tan, R. Chen, L. Li, J. Xiang, Y. Zheng, Adv. Mater. 2011, 23, 5081–5085;
- 22bB. Joos, T. Vranken, W. Marchal, M. Safari, M. K. Van Bael, A. T. Hardy, Chem. Mater. 2018, 30, 655–662.
- 23R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. 2007, 46, 7778–7781; Angew. Chem. 2007, 119, 7925–7928.
- 24M. V. Korobov, D. S. Volkov, N. V. Avramenko, L. A. Belyaeva, P. I. Semenyuk, M. A. Proskurnin, Nanoscale 2013, 5, 1529–1536.
- 25O. Borodin, Curr. Opin. Electrochem. 2019, 13, 86–93.
- 26
- 26aF. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, Nature 1998, 394, 456–458;
- 26bW. Wieczorek, J. R. Stevens, Z. Florjańczyk, Solid State Ionics 1996, 85, 67–72.
- 27
- 27aN. Wu, P. H. Chien, Y. Qian, Y. Li, H. Xu, N. S. Grundish, B. Xu, H. Jin, Y. Y. Hu, G. Yu, J. B. Goodenough, Angew. Chem. Int. Ed. 2020, 59, 4131–4137; Angew. Chem. 2020, 132, 4160–4166;
- 27bJ. M. Whiteley, S. Hafner, S. S. Han, S. C. Kim, K. H. Oh, S.-H. Lee, Adv. Energy Mater. 2016, 6, 1600495.
- 28
- 28aX. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, J. R. Lombardi, J. Phys. Chem. C 2012, 116, 8792–8797;
- 28bF. Wu, N. Chen, R. Chen, Q. Zhu, J. Ban, L. Li, Chem. Mater. 2016, 28, 848–856;
- 28cM. Takeuchi, K. Sakamoto, G. Martra, S. Coluccia, M. Anpo, J. Phys. Chem. B 2005, 109, 15422–15428.
- 29
- 29aA. Asadi, I. M. Alarifi, L. K. Foong, J. Mol. Liq. 2020, 307, 112987;
- 29bM. E. Özgür, A. Ulu, S. A. A. Noma, İ. Özcan, S. Balcıoğlu, B. Ateş, S. Köytepe, Environ. Sci. Pollut. Res. 2020, 27, 17843–17853.
- 30D. M. Seo, O. Borodin, S.-D. Han, P. D. Boyle, W. A. Henderson, J. Electrochem. Soc. 2012, 159, A1489–A1500.
- 31
- 31aS. P. C. Murali, A. S. Samuel, J. Appl. Polym. Sci. 2019, 136, 47654;
- 31bB. Kumar, J. Power Sources 2004, 135, 215–231.
- 32L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X. Q. Yang, C. Wang, J. Am. Chem. Soc. 2020, 142, 21404–21409.
- 33H. Kitaura, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago, J. Mater. Chem. 2011, 21, 118–124.
- 34A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.
- 35J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu, Z. Guo, Adv. Mater. 2020, 32, 2003021.
- 36P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210–1211.