Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidation-Assisted High-Efficiency H2 Production
Yin Zhu
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jihua Zhang
Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou, 550018 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorQizhu Qian
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYapeng Li
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorZiyun Li
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorYi Liu
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chong Xiao
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Genqiang Zhang
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yi Xie
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031 P. R. China
Search for more papers by this authorYin Zhu
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jihua Zhang
Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou, 550018 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorQizhu Qian
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYapeng Li
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorZiyun Li
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorYi Liu
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chong Xiao
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Genqiang Zhang
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yi Xie
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031 P. R. China
Search for more papers by this authorGraphical Abstract
A Ni/C hybrid nanosheet array with dual-active nanoisland sites is reported. One type of island represents the bare Ni particle surface, the other consists of core–shell Ni@C structures (denoted as Ni-C HNSA). The catalyst achieves efficient hydrogen production in an overall hydrazine splitting, showing its potential for practical applications.
Abstract
Clean hydrogen evolution through electrochemical water splitting underpins various innovative approaches to the pursuit of sustainable energy conversion technologies, but it is blocked by the sluggish anodic oxygen evolution reaction (OER). The hydrazine oxidation reaction (HzOR) has been considered as one of the most promising substitute for OER to improve the efficiency of hydrogen evolution reaction (HER). Herein, we construct novel dual nanoislands on Ni/C hybrid nanosheet array: one kind of island represents the part of bare Ni particle surface, while the other stands for the part of core–shell Ni@C structure (denoted as Ni-C HNSA), in which exposed Ni atoms and Ni-decorated carbon shell perform as active sites for HzOR and HER respectively. As a result, when the current density reaches 10 mA cm−2, the working potentials are merely −37 mV for HER and -20 mV for HzOR. A two-electrode electrolyzer exhibits superb activity that only requires an ultrasmall cell voltage of 0.14 V to achieve 50 mA cm−2.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202113082-sup-0001-misc_information.pdf3.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998;
- 1bB. Rausch, M. D. Symes, G. Chisholm, L. Cronin, Science 2014, 345, 1326;
- 1cJ. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater. 2016, 28, 215–230.
- 2
- 2aM. K. Debe, Nature 2012, 486, 43–51;
- 2bY. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060–2086.
- 3
- 3aY. Li, J. Zhang, Y. Liu, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Sci. Adv. 2020, 6, eabb4197;
- 3bY. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Nat. Commun. 2020, 11, 1853;
- 3cX. Liu, J. He, S. Zhao, Y. Liu, Z. Zhao, J. Luo, G. Hu, X. Sun, Y. Ding, Nat. Commun. 2018, 9, 4365.
- 4
- 4aZ. Wang, L. Xu, F. Huang, L. Qu, J. Li, K. A. Owusu, Z. Liu, Z. Lin, B. Xiang, X. Liu, K. Zhao, X. Liao, W. Yang, Y. B. Cheng, L. Mai, Adv. Energy Mater. 2019, 9, 1900390;
- 4bQ. Qian, Y. Li, Y. Liu, L. Yu, G. Zhang, Adv. Mater. 2019, 31, 1901139;
- 4cT. Kou, M. Chen, F. Wu, T. J. Smart, S. Wang, Y. Wu, Y. Zhang, S. Li, S. Lall, Z. Zhang, Y. S. Liu, J. Guo, G. Wang, Y. Ping, Y. Li, Nat. Commun. 2020, 11, 590;
- 4dC. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A. M. Asiri, X. Sun, Angew. Chem. Int. Ed. 2017, 56, 842–846; Angew. Chem. 2017, 129, 860–864;
- 4eH. Wen, L.-Y. Gan, H.-B. Dai, X.-P. Wen, L.-S. Wu, H. Wu, P. Wang, Appl. Catal. B 2019, 241, 292–298;
- 4fG. Feng, Y. Kuang, P. Li, N. Han, M. Sun, G. Zhang, X. Sun, Adv. Sci. 2017, 4, 1600179.
- 5
- 5aL. Zhang, H. Yang, D. K. J. A. Wanigarathna, B. Liu, Small Methods 2018, 2, 1700353;
- 5bY. Yang, Z. Lun, G. Xia, F. Zheng, M. He, Q. Chen, Energy Environ. Sci. 2015, 8, 3563–3571;
- 5cY. Li, J. Gao, F. Zhang, Q. Qian, Y. Liu, G. Zhang, J. Mater. Chem. A 2018, 6, 15523–15529;
- 5dD. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem. Int. Ed. 2013, 52, 371–375; Angew. Chem. 2013, 125, 389–393;
- 5eZ. Pu, J. Zhao, I. S. Amiinu, W. Li, M. Wang, D. He, S. Mu, Energy Environ. Sci. 2019, 12, 952–957.
- 6J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed. 2015, 54, 2100–2104; Angew. Chem. 2015, 127, 2128–2132.
- 7S. Deng, F. Yang, Q. Zhang, Y. Zhong, Y. Zeng, S. Lin, X. Wang, X. Lu, C. Z. Wang, L. Gu, X. Xia, J. Tu, Adv. Mater. 2018, 30, 1802223.
- 8Y. Hao, Y. Xu, W. Liu, X. Sun, Mater. Horiz. 2018, 5, 108–115.
- 9
- 9aY. Guo, X. Gao, C. Zhang, Y. Wu, X. Chang, T. Wang, X. Zheng, A. Du, B. Wang, J. Zheng, K. Ostrikov, X. Li, J. Mater. Chem. A 2019, 7, 8129–8135;
- 9bJ. Tang, Y. Yamauchi, Nat. Chem. 2016, 8, 638–639.
- 10
- 10aN. L. Torad, B. Ding, W. A. El-Said, D. A. El-Hady, W. Alshitari, J. Na, Y. Yamauchi, X. Zhang, Carbon 2020, 168, 55–64;
- 10bH. Sun, Y. Lian, C. Yang, L. Xiong, P. Qi, Q. Mu, X. Zhao, J. Guo, Z. Deng, Y. Peng, Energy Environ. Sci. 2018, 11, 2363–2371;
- 10cY. Yang, M. Luo, Y. Xing, S. Wang, W. Zhang, F. Lv, Y. Li, Y. Zhang, W. Wang, S. Guo, Adv. Mater. 2018, 30, 1706085.
- 11
- 11aJ. Zhou, Y. Dou, X.-Q. Wu, A. Zhou, L. Shu, J.-R. Li, Small 2020, 16, 1906564;
- 11bQ. Liu, L. Xie, X. Shi, G. Du, A. M. Asiri, Y. Luo, X. Sun, Inorg. Chem. Front. 2018, 5, 1570–1574.
- 12
- 12aD.-J. Lee, Q. Li, H. Kim, K. Lee, Microporous Mesoporous Mater. 2012, 163, 169–177;
- 12bY. Han, S. Zhang, N. Shen, D. Li, X. Li, Mater. Lett. 2017, 188, 1–4.
- 13
- 13aB. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006;
- 13bH. Jin, X. Wang, C. Tang, A. Vasileff, L. Li, A. Slattery, S.-Z. Qiao, Adv. Mater. 2021, 33, 2007508;
- 13cZ. Li, H. He, H. Cao, S. Sun, W. Diao, D. Gao, P. Lu, S. Zhang, Z. Guo, M. Li, R. Liu, D. Ren, C. Liu, Y. Zhang, Z. Yang, J. Jiang, G. Zhang, Appl. Catal. B 2019, 240, 112–121.
- 14X. Yang, H. Lin, W. Hua, J. Yang, J. Porous Mater. 2019, 26, 1713–1720.
- 15Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano 2018, 12, 245–253.
- 16T.-H. Lu, C.-J. Chen, M. Basu, C.-G. Ma, R.-S. Liu, Chem. Commun. 2015, 51, 17012–17015.
- 17
- 17aM. Grdeń, M. Alsabet, G. Jerkiewicz, ACS Appl. Mater. Interfaces 2012, 4, 3012–3021;
- 17bS. Anantharaj, S. Kundu, ACS Energy Lett. 2019, 4, 1260–1264.
- 18J.-Y. Zhang, H. Wang, Y. Tian, Y. Yan, Q. Xue, T. He, H. Liu, C. Wang, Y. Chen, B. Y. Xia, Angew. Chem. Int. Ed. 2018, 57, 7649–7653; Angew. Chem. 2018, 130, 7775–7779.
- 19
- 19aT. Wang, M. Wang, H. Yang, M. Xu, C. Zuo, K. Feng, M. Xie, J. Deng, J. Zhong, W. Zhou, T. Cheng, Y. Li, Energy Environ. Sci. 2019, 12, 3522–3529;
- 19bM. Wang, H. Yang, J. Shi, Y. Chen, Y. Zhou, L. Wang, S. Di, X. Zhao, J. Zhong, T. Cheng, W. Zhou, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 5771–5777; Angew. Chem. 2021, 133, 5835–5841;
- 19cP. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao, X. Huang, Nat. Commun. 2017, 8, 14580.
- 20J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Nørskov, Nat. Mater. 2006, 5, 909–913.
- 21J. Lai, B. Huang, Y. Chao, X. Chen, S. Guo, Adv. Mater. 2019, 31, 1805541.
- 22L. Zhou, M. Shao, C. Zhang, J. Zhao, S. He, D. Rao, M. Wei, D. G. Evans, X. Duan, Adv. Mater. 2017, 29, 1604080.