Dual-Ion Intercalation and High Volumetric Capacitance in a Two-Dimensional Non-Porous Coordination Polymer
Dr. Harish Banda
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Jin-Hu Dou
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
These authors contributed equally to this work.
Search for more papers by this authorTianyang Chen
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
Search for more papers by this authorDr. Yugang Zhang
Center for Functional Nanomaterials, Brookhaven National Laboratories, 735 Brookhaven Avenue, Upton, NY, 11973 USA
Search for more papers by this authorCorresponding Author
Prof. Mircea Dincă
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
Search for more papers by this authorDr. Harish Banda
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Jin-Hu Dou
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
These authors contributed equally to this work.
Search for more papers by this authorTianyang Chen
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
Search for more papers by this authorDr. Yugang Zhang
Center for Functional Nanomaterials, Brookhaven National Laboratories, 735 Brookhaven Avenue, Upton, NY, 11973 USA
Search for more papers by this authorCorresponding Author
Prof. Mircea Dincă
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
Search for more papers by this authorGraphical Abstract
A two-dimensional coordination polymer (Ni3BHT) demonstrates rapid and reversible intercalation of both cations and anions in an electrochemical capacitor (EC). This first observation of dual-ion intercalation in ECs presents a unique scenario, wherein cation intercalation in Ni3BHT is pseudocapacitive but anion intercalation is capacitive in nature.
Abstract
Intercalation is a promising ion-sorption mechanism for enhancing the energy density of electrochemical capacitors (ECs) because it offers enhanced access to the electrochemical surface area. It requires a rapid transport of ions in and out of a host material, and it must occur without phase transformations. Materials that fulfil these requirements are rare; those that do intercalate almost exclusively cations. Herein, we show that Ni3(benzenehexathiol) (Ni3BHT), a non-porous two-dimensional (2D) layered coordination polymer (CP), intercalates both cations and anions with a variety of charges. Whereas cation intercalation is pseudocapacitive, anions intercalate in a purely capacitive fashion. The excellent EC performance of Ni3BHT provides a general basis for investigating similar dual-ion intercalation mechanisms in the large family of non-porous 2D CPs.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202112811-sup-0001-misc_information.pdf5.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845–854.
- 2P. Simon, Y. Gogotsi, Nat. Mater. 2020, 19, 1151–1163.
- 3F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 2014, 26, 2219–2251.
- 4M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C. P. Grey, B. Dunn, P. Simon, Nat. Energy 2016, 1, 1–10.
- 5T. Brousse, D. Bélanger, J. W. Long, J. Electrochem. Soc. 2015, 162, A5185–A5189.
- 6X. Wu, Y. Qi, J. J. Hong, Z. Li, A. S. Hernandez, X. Ji, Angew. Chem. Int. Ed. 2017, 56, 13026–13030; Angew. Chem. 2017, 129, 13206–13210.
- 7G. Liang, F. Mo, X. Ji, C. Zhi, Nat. Rev. Mater. 2021, 6, 109–123.
- 8B. E. Conway, J. Electrochem. Soc. 1991, 138, 1539–1548.
- 9V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518–522.
- 10V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 2014, 7, 1597–1614.
- 11T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146–151.
- 12M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall′Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502–1505.
- 13S. Fleischmann, J. B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, V. Augustyn, Chem. Rev. 2020, 120, 6738–6782.
- 14C. Choi, D. S. Ashby, D. M. Butts, R. H. DeBlock, Q. Wei, J. Lau, B. Dunn, Nat. Rev. Mater. 2020, 5, 5–19.
- 15M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78–81.
- 16M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 2015, 10, 313–318.
- 17Y. Liu, S. P. Jiang, Z. Shao, Mater. Today Adv. 2020, 7, 100072.
- 18J. T. Mefford, W. G. Hardin, S. Dai, K. P. Johnston, K. J. Stevenson, Nat. Mater. 2014, 13, 726–732.
- 19T. S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Adv. Energy Mater. 2019, 9, 1902007.
- 20P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210–1211.
- 21Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu, Adv. Mater. 2011, 23, 791–795.
- 22J. W. Kim, V. Augustyn, B. Dunn, Adv. Energy Mater. 2012, 2, 141–148.
- 23X. Wang, T. S. Mathis, K. Li, Z. Lin, L. Vlcek, T. Torita, N. C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, Y. Gogotsi, Nat. Energy 2019, 4, 241–248.
- 24C. Costentin, J.-M. Savéant, Chem. Sci. 2019, 10, 5656–5666.
- 25C. Costentin, T. R. Porter, J.-M. Savéant, ACS Appl. Mater. Interfaces 2017, 9, 8649–8658.
- 26M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O. M. Yaghi, Chem. Mater. 2012, 24, 3511–3513.
- 27J.-H. Dou, L. Sun, Y. Ge, W. Li, C. H. Hendon, J. Li, S. Gul, J. Yano, E. A. Stach, M. Dincă, J. Am. Chem. Soc. 2017, 139, 13608–13611.
- 28A. C. Hinckley, J. Park, J. Gomes, E. Carlson, Z. Bao, J. Am. Chem. Soc. 2020, 142, 11123–11130.
- 29M. Yu, R. Dong, X. Feng, J. Am. Chem. Soc. 2020, 142, 12903–12915.
- 30T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 2013, 135, 2462–2465.
- 31X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C. Di, Y. Yi, Y. Sun, W. Xu, D. Zhu, Nat. Commun. 2015, 6, 1–8.
- 32L. S. Xie, G. Skorupskii, M. Dincă, Chem. Rev. 2020, 120, 8536–8580.
- 33J.-H. Dou, M. Q. Arguilla, Y. Luo, J. Li, W. Zhang, L. Sun, J. L. Mancuso, L. Yang, T. Chen, L. R. Parent, G. Skorupskii, N. J. Libretto, C. Sun, M. C. Yang, P. V. Dip, E. J. Brignole, J. T. Miller, J. Kong, C. H. Hendon, J. Sun, M. Dincă, Nat. Mater. 2021, 20, 222–228.
- 34S. Bi, H. Banda, M. Chen, L. Niu, M. Chen, T. Wu, J. Wang, R. Wang, J. Feng, T. Chen, M. Dincă, A. A. Kornyshev, G. Feng, Nat. Mater. 2020, 19, 552–558.
- 35D. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dincă, Nat. Mater. 2017, 16, 220–224.
- 36D. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A. A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok, X. Zou, Y. Cui, Z. Bao, Nat. Energy 2018, 3, 30–36.
- 37M. R. Lukatskaya, D. Feng, S.-M. Bak, J. W. F. To, X.-Q. Yang, Y. Cui, J. I. Feldblyum, Z. Bao, ACS Nano 2020, 14, 15919–15925.
- 38A. Schneemann, R. Dong, F. Schwotzer, H. Zhong, I. Senkovska, X. Feng, S. Kaskel, Chem. Sci. 2021, 12, 1600–1619.
- 39H. Banda, J.-H. Dou, T. Chen, N. J. Libretto, M. Chaudhary, G. M. Bernard, J. T. Miller, V. K. Michaelis, M. Dincă, J. Am. Chem. Soc. 2021, 143, 2285–2292.
- 40T. Liu, W. G. Pell, B. E. Conway, Electrochim. Acta 1997, 42, 3541–3552.
- 41B. E. Conway, D. C. W. Kannangara, J. Electrochem. Soc. 1987, 134, 906–918.
- 42J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925–14931.
- 43C. Costentin, J. Phys. Chem. Lett. 2020, 11, 9846–9849.
- 44M. Forghani, S. W. Donne, J. Electrochem. Soc. 2019, 166, A1370–A1379.
- 45M. Forghani, S. W. Donne, J. Electrochem. Soc. 2018, 165, A664–A673.
- 46H. Shao, Z. Lin, K. Xu, P.-L. Taberna, P. Simon, Energy Storage Mater. 2019, 18, 456–461.
- 47P. L. Taberna, P. Simon, J. F. Fauvarque, J. Electrochem. Soc. 2003, 150, A292–A300.
- 48J. S. Ko, M. B. Sassin, D. R. Rolison, J. W. Long, Electrochim. Acta 2018, 275, 225–235.
- 49T. Kusamoto, H. Nishihara, Coord. Chem. Rev. 2019, 380, 419–439.
- 50Z. Wu, D. Adekoya, X. Huang, M. J. Kiefel, J. Xie, W. Xu, Q. Zhang, D. Zhu, S. Zhang, ACS Nano 2020, 14, 12016–12026.