Ring-Opening Metathesis Polymerization of a Macrobicyclic Olefin Bearing a Sacrificial Silyloxide Bridge
Zhen Yu
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorDr. Meng Wang
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorDr. Xu-Man Chen
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorDr. Shuai Huang
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorCorresponding Author
Prof. Hong Yang
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorZhen Yu
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorDr. Meng Wang
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorDr. Xu-Man Chen
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorDr. Shuai Huang
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorCorresponding Author
Prof. Hong Yang
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189 China
Search for more papers by this authorGraphical Abstract
We developed a macrobicyclic olefin system bearing a sacrificial silyloxide bridge on the α,β′-positions of the double bond as a new sequence-defined monomer for regio-selective ring-opening metathesis polymerization. The monomeric sequence information is implanted in the macro-ring, while the small ring with a substantial ring tension can provide not only narrow polydispersity, but also high regio-/stereospecificity.
Abstract
Ring-opening metathesis polymerization (ROMP) has been regarded as a powerful tool for sequence-controlled polymerization. However, the traditional entropy-driven ROMP of macrocyclic olefins suffers from the lack of ring strain and poor regioselectivity, whereas the relay-ring-closing metathesis polymerization inevitably brings some unnecessary auxiliary structure into each monomeric unit. We developed a macrobicyclic olefin system bearing a sacrificial silyloxide bridge on the α,β′-positions of the double bond as a new class of sequence-defined monomer for regioselective ROMP. The monomeric sequence information is implanted in the macro-ring, while the small ring, a 3-substituted cyclooctene structure with substantial ring tension, can provide not only narrow polydispersity, but also high regio-/stereospecificity. Besides, the silyloxide bridge can be sacrificially cleaved by desilylation and deoxygenation reactions to provide clean-structured, non-auxiliaried polymers.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202112526-sup-0001-misc_information.pdf4.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. Badi, J.-F. Lutz, Chem. Soc. Rev. 2009, 38, 3383–3390;
- 1bJ.-F. Lutz, Polym. Chem. 2010, 1, 55–62;
- 1cJ.-F. Lutz, M. Ouchi, D. R. Liu, M. Sawamoto, Science 2013, 341, 1238149.
- 2
- 2aP. Espeel, L. L. G. Carrette, K. Bury, S. Capenberghs, J. C. Martins, F. E. DuPrez, A. Madder, Angew. Chem. Int. Ed. 2013, 52, 13261–13264; Angew. Chem. 2013, 125, 13503–13506;
- 2bS. Pfeifer, Z. Zarafshani, N. Badi, J.-F. Lutz, J. Am. Chem. Soc. 2009, 131, 9195–9197;
- 2cA. M. Rosales, R. A. Segalman, R. N. Zuckermann, Soft Matter 2013, 9, 8400–8414;
- 2dJ. C. Barnes, D. J. C. Ehrlich, A. X. Gao, F. A. Leibfarth, Y. Jiang, E. Zhou, T. F. Jamison, J. A. Johnson, Nat. Chem. 2015, 7, 810–815;
- 2eT.-W. Hsu, C. Kim, Q. Michaudel, J. Am. Chem. Soc. 2020, 142, 11983–11987;
- 2fM. Miyajima, K. Satoh, T. Horibe, K. Ishihara, M. Kamigaito, J. Am. Chem. Soc. 2020, 142, 18955–18962;
- 2gZ.-L. Li, A. Lv, F.-S. Du, Z.-C. Li, Macromolecules 2014, 47, 5942–5951;
- 2hZ. Jia, J. Jiang, X. Zhang, Y. Cui, Z. Chen, X. Pan, J. Wu, J. Am. Chem. Soc. 2021, 143, 4421–4432;
- 2iB. V. K. J. Schmidt, N. Fechler, J. Falkenhagen, J.-F. Lutz, Nat. Chem. 2011, 3, 234–238;
- 2jD. Moatsou, C. F. Hansell, R. K. O'Reilly, Chem. Sci. 2014, 5, 2246–2250;
- 2kY. Hibi, M. Ouchi, M. Sawamoto, Angew. Chem. Int. Ed. 2011, 50, 7434–7437; Angew. Chem. 2011, 123, 7572–7575;
- 2lJ. Niu, R. Hili, D. R. Liu, Nat. Chem. 2013, 5, 282;
- 2mC. J. Yang, J. P. Flynn, J. Niu, Angew. Chem. Int. Ed. 2018, 57, 16194–16199; Angew. Chem. 2018, 130, 16426–16431;
- 2nH. C. Huang, B. H. Sun, Y. Z. Huang, J. Niu, J. Am. Chem. Soc. 2018, 140, 10402–10406;
- 2oH. C. Huang, W. Q. Wang, Z. F. Zhou, B. H. Sun, M. R. An, F. Haeffner, J. Niu, J. Am. Chem. Soc. 2019, 141, 12493–12497.
- 3
- 3aH. Sun, Y. Liang, M. P. Thompson, N. C. Gianneschi, Prog. Polym. Sci. 2021, 120, 101427;
- 3bS. Varlas, S. B. Lawrenson, L. A. Arkinstall, R. K. O'Reilly, J. C. Foster, Prog. Polym. Sci. 2020, 107, 101278.
- 4
- 4aM. J. Marsella, H. D. Maynard, R. H. Grubbs, Angew. Chem. Int. Ed. Engl. 1997, 36, 1101–1103; Angew. Chem. 1997, 109, 1147–1150;
- 4bP. Hodge, S. D. Kamau, Angew. Chem. Int. Ed. 2003, 42, 2412–2414; Angew. Chem. 2003, 115, 2514–2516;
- 4cJ. E. Gautrot, X. X. Zhu, Angew. Chem. Int. Ed. 2006, 45, 6872–6874; Angew. Chem. 2006, 118, 7026–7028;
- 4dS. Kang, B. M. Berkshire, Z. Xue, M. Gupta, C. Layode, P. A. May, M. F. Mayer, J. Am. Chem. Soc. 2008, 130, 15246–15247;
- 4eZ. Xue, M. F. Mayer, Soft Matter 2009, 5, 4600–4611;
- 4fS. Strandman, J. E. Gautrot, X. X. Zhu, Polym. Chem. 2011, 2, 791–799;
- 4gL.-L. Deng, L.-X. Guo, B.-P. Lin, X.-Q. Zhang, Y. Sun, H. Yang, Polym. Chem. 2016, 7, 5265–5272.
- 5
- 5aS. Monfette, D. E. Fogg, Chem. Rev. 2009, 109, 3783–3816;
- 5bP. Hodge, Chem. Rev. 2014, 114, 2278–2312.
- 6
- 6aR. M. Weiss, A. L. Short, T. Y. Meyer, ACS Macro Lett. 2015, 4, 1039–1043;
- 6bA. L. Short, C. Fang, J. A. Nowalk, R. M. Weiss, P. Liu, T. Y. Meyer, ACS Macro Lett. 2018, 7, 858–862;
- 6cJ. A. Nowalk, C. Fang, A. L. Short, R. M. Weiss, J. H. Swisher, P. Liu, T. Y. Meyer, J. Am. Chem. Soc. 2019, 141, 5741–5752;
- 6dZ. Huang, B. B. Noble, N. Corrigan, Y. Chu, K. Satoh, D. S. Thomas, C. J. Hawker, G. Moad, M. Kamigaito, M. L. Coote, C. Boyer, J. Xu, J. Am. Chem. Soc. 2018, 140, 13392–13406.
- 7
- 7aH. Park, T.-L. Choi, J. Am. Chem. Soc. 2012, 134, 7270–7273;
- 7bH. Park, H.-K. Lee, T.-L. Choi, J. Am. Chem. Soc. 2013, 135, 10769–10775;
- 7cH.-K. Lee, K.-T. Bang, A. Hess, R. H. Grubbs, T.-L. Choi, J. Am. Chem. Soc. 2015, 137, 9262–9265;
- 7dH.-K. Lee, J. Lee, J. Kockelmann, T. Herrmann, M. Sarif, T.-L. Choi, J. Am. Chem. Soc. 2018, 140, 10536–10545;
- 7eA. Rizzo, G. I. Peterson, A. Bhaumik, C. Kang, T.-L. Choi, Angew. Chem. Int. Ed. 2021, 60, 849–855; Angew. Chem. 2021, 133, 862–868;
- 7fX. Sui, T. Zhang, A. B. Pabarue, L. Fu, W. R. Gutekunst, J. Am. Chem. Soc. 2020, 142, 12942–12947;
- 7gC. Kang, K. Jung, S. Ahn, T.-L. Choi, J. Am. Chem. Soc. 2020, 142, 17140–17146.
- 8
- 8aW. R. Gutekunst, C. J. Hawker, J. Am. Chem. Soc. 2015, 137, 8038–8041;
- 8bA. Bhaumik, G. I. Peterson, C. Kang, T.-L. Choi, J. Am. Chem. Soc. 2019, 141, 12207–12211;
- 8cY. He, Y. Wu, M. Zhang, Y. Zhang, H. Ding, K. Zhang, Macromolecules 2021, 54, 5797–5805.
- 9
- 9aS. Kobayashi, L. M. Pitet, M. A. Hillmyer, J. Am. Chem. Soc. 2011, 133, 5794–5797;
- 9bJ. Zhang, M. E. Matta, M. A. Hillmyer, ACS Macro Lett. 2012, 1, 1383–1387;
- 9cJ. Zhang, M. E. Matta, H. Martinez, M. A. Hillmyer, Macromolecules 2013, 46, 2535–2543.
- 10S. Kobayashi, K. Fukuda, M. Kataoka, M. Tanaka, Macromolecules 2016, 49, 2493–2501.