Clippane: A Mechanically Interlocked Molecule (MIM) Based on Molecular Tweezers
Susana Ibáñez
Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón, Spain
Search for more papers by this authorCristian Vicent
Servei Central d'Instrumentació Científica (SCIC), Universitat, Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
Search for more papers by this authorCorresponding Author
Eduardo Peris
Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón, Spain
Search for more papers by this authorSusana Ibáñez
Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón, Spain
Search for more papers by this authorCristian Vicent
Servei Central d'Instrumentació Científica (SCIC), Universitat, Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
Search for more papers by this authorCorresponding Author
Eduardo Peris
Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón, Spain
Search for more papers by this authorGraphical Abstract
We present a new type of MIM comprised by two “open” U-shaped metallotweezers. The dissociation into its two components is hampered by mechanical bonds, as the presence of bulky tert-butyl groups provides the mechanical coercion required for avoiding the slippage that would otherwise produce the disassembly.
Abstract
In this study we report the preparation of a new mechanically interlocked molecule formed by the self-aggregation of two metallotweezers composed by two pyrene-imidazolylidene gold(I) arms and a pyridine-centered pentacyclic bis-alkynyl linker. The mechanically interlocked nature of this molecule arises from the presence of the bulky tert-butyl groups attached to the sides of the pyrene moieties of the arms of the tweezer, which act as stoppers avoiding the dissociation of the self-aggregated metallotweezer dimer once it is formed. By combining experimental techniques, we were able to confirm the mechanically interlocked nature of this molecule in solution, in the gas phase and in the solid state. The behavior of the tert-butyl substituted tweezer differs greatly form that shown by the tweezer lacking of these bulky groups, whose dimeric structure is in equilibrium with the monomeric structure, therefore not showing any mechanical coercion that avoids the disassembly of the self-aggregated structure.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202112513-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094–11125; Angew. Chem. 2017, 129, 11244–11277;
- 1bJ. F. Stoddart, Angew. Chem. Int. Ed. 2014, 53, 11102–11104; Angew. Chem. 2014, 126, 11282–11284.
- 2C. J. Bruns, J. F. Stoddart, Top. Curr. Chem. 2011, 323, 19–72.
- 3J. F. Stoddart, Chem. Soc. Rev. 2009, 38, 1802–1820.
- 4
- 4aJ. B. Bruns, J. F. Stoddart, The Nature of the Mechanical Bond: From Molecules to Machines, Wiley, Hoboken, NJ, 2016;
10.1002/9781119044123 Google Scholar
- 4bW. R. Dichtel, O. S. Miljanic, W. Y. Zhang, J. M. Spruell, K. Patel, I. Aprahamian, J. R. Heath, J. F. Stoddartt, Acc. Chem. Res. 2008, 41, 1750–1761;
- 4cM. Denis, S. M. Goldup, Nat. Rev. Chem. 2017, 1, 61;
- 4dJ. E. M. Lewis, M. Galli, S. M. Goldup, Chem. Commun. 2017, 53, 298–312;
- 4eJ. D. Crowley, S. M. Goldup, A. L. Lee, D. A. Leigh, R. T. McBurney, Chem. Soc. Rev. 2009, 38, 1530–1541.
- 5W. Q. Liu, C. L. Stern, J. F. Stoddart, J. Am. Chem. Soc. 2020, 142, 10273–10278.
- 6
- 6aJ. Leblond, A. Petitjean, ChemPhysChem 2011, 12, 1043–1051;
- 6bM. Hardouin-Lerouge, P. Hudhomme, M. Salle, Chem. Soc. Rev. 2011, 40, 30–43;
- 6cF. G. Klärner, T. Schrader, Acc. Chem. Res. 2013, 46, 967–978;
- 6dF. G. Klärner, B. Kahlert, Acc. Chem. Res. 2003, 36, 919–932.
- 7
- 7aY. S. Wong, M. Ng, M. C. L. Yeung, V. W. W. Yam, J. Am. Chem. Soc. 2021, 143, 973–982;
- 7bV. W. W. Yam, V. K. M. Au, S. Y. L. Leung, Chem. Rev. 2015, 115, 7589–7728;
- 7cA. K. W. Chan, V. W. W. Yam, Acc. Chem. Res. 2018, 51, 3041–3051;
- 7dF. K. W. Kong, A. K. W. Chan, M. Ng, K. H. Low, V. W. W. Yam, Angew. Chem. Int. Ed. 2017, 56, 15103–15107; Angew. Chem. 2017, 129, 15299–15303;
- 7eY. Tanaka, K. M. C. Wong, V. W. W. Yam, Angew. Chem. Int. Ed. 2013, 52, 14117–14120; Angew. Chem. 2013, 125, 14367–14370;
- 7fY. Tanaka, K. M. C. Wong, V. W. W. Yam, Chem. Sci. 2012, 3, 1185–1191;
- 7gK. M. C. Wong, V. W. W. Yam, Acc. Chem. Res. 2011, 44, 424–434;
- 7hM. Yuan, X. L. Zhang, Y. F. Han, F. Wang, F. Wang, Inorg. Chem. 2020, 59, 14134–14140;
- 7iX. L. Zhang, Y. F. Han, G. Y. Liu, F. Wang, Chin. Chem. Lett. 2019, 30, 1927–1930;
- 7jX. L. Zhang, L. Ao, Y. F. Han, Z. Gao, F. Wang, Chem. Commun. 2018, 54, 1754–1757;
- 7kZ. Gao, Y. F. Han, Z. C. Gao, F. Wang, Acc. Chem. Res. 2018, 51, 2719–2729;
- 7lM. Y. Liu, Y. F. Han, H. Zhong, X. L. Zhang, F. Wang, Angew. Chem. Int. Ed. 2021, 60, 3498–3503; Angew. Chem. 2021, 133, 3540–3545.
- 8
- 8aA. J. Goshe, I. M. Steele, B. Bosnich, Inorg. Chim. Acta 2004, 357, 4544–4551;
- 8bJ. D. Crowley, A. J. Goshe, B. Bosnich, Chem. Commun. 2003, 392–393;
- 8cA. J. Goshe, J. D. Crowley, B. Bosnich, Helv. Chim. Acta 2001, 84, 2971–2985;
- 8dJ. D. Crowley, I. M. Steele, B. Bosnich, Inorg. Chem. 2005, 44, 2989–2991;
- 8eJ. D. Crowley, I. M. Steele, B. Bosnich, Eur. J. Inorg. Chem. 2005, 3907–3917;
- 8fJ. D. Crowley, B. Bosnich, Eur. J. Inorg. Chem. 2005, 2015–2025;
- 8gA. J. Goshe, I. M. Steele, B. Bosnich, J. Am. Chem. Soc. 2003, 125, 444–451;
- 8hA. J. Goshe, I. M. Steele, C. Ceccarelli, A. L. Rheingold, B. Bosnich, Proc. Natl. Acad. Sci. USA 2002, 99, 4823–4829;
- 8iR. D. Sommer, A. L. Rheingold, A. J. Goshe, B. Bosnich, J. Am. Chem. Soc. 2001, 123, 3940–3952.
- 9
- 9aS. Ibáñez, M. Poyatos, E. Peris, Acc. Chem. Res. 2020, 53, 1401–1413;
- 9bS. Ibáñez, E. Peris, Chem. Eur. J. 2021, 27, 9661–9665;
- 9cS. Ibáñez, E. Peris, Chem. Eur. J. 2019, 25, 8254–8258;
- 9dS. Ibáñez, M. Poyatos, E. Peris, Angew. Chem. Int. Ed. 2018, 57, 16816–16820; Angew. Chem. 2018, 130, 17058–17062;
- 9eS. Ibáñez, E. Peris, Chem. Eur. J. 2018, 24, 8424–8431;
- 9fS. Ibáñez, M. Poyatos, E. Peris, Angew. Chem. Int. Ed. 2017, 56, 9786–9790; Angew. Chem. 2017, 129, 9918–9922;
- 9gC. Biz, S. Ibáñez, M. Poyatos, D. Gusev, E. Peris, Chem. Eur. J. 2017, 23, 14439–14444.
- 10S. C. Zimmerman, M. Mrksich, M. Baloga, J. Am. Chem. Soc. 1989, 111, 8528–8530.
- 11S. Ibanez, M. Poyatos, E. Peris, J. Organomet. Chem. 2020, 917, 121284 .
- 12S. Ibáñez, M. Poyatos, E. Peris, Organometallics 2017, 36, 1447–1451.
- 13D. Kim, I. Jung, K. H. Song, S. O. Kang, J. Ko, J. Organomet. Chem. 2006, 691, 5946–5954.
- 14The calculation of the equilibrium constant was performed by calculating the relative concentration of 3 and 32 by 1H NMR from a CDCl3 solution with an initial concentration of [3]0=3.34 mM=[3] + 2[32].
- 15L. Polewski, A. Springer, K. Pagel, C. A. Schalley, Acc. Chem. Res. 2021, 54, 2445–2456.
- 16
- 16aZ. Qi, T. Heinrich, S. Moorthy, C. A. Schalley, Chem. Soc. Rev. 2015, 44, 515–531;
- 16bL. Cera, C. A. Schalley, Chem. Soc. Rev. 2014, 43, 1800–1812.
- 17
- 17aK. Guo, Z. Guo, J. M. Ludlow III, T. Xie, S. Liao, G. R. Newkome, C. Wesdemiotis, Macromol. Rapid Commun. 2015, 36, 1539–1552;
- 17bX. Li, Y.-T. Chan, G. R. Newkome, C. Wesdemiotis, Anal. Chem. 2011, 83, 1284–1290;
- 17cS. Perera, X. Li, M. Soler, A. Schultz, C. Wesdemiotis, C. N. Moorefield, G. R. Newkome, Angew. Chem. Int. Ed. 2010, 49, 6539–6544; Angew. Chem. 2010, 122, 6689–6694.
- 18
- 18aE. Hanozin, B. Mignolet, D. Morsa, D. Sluysmans, A. S. Duwez, J. F. Stoddart, F. Remacle, E. De Pauw, ACS Nano 2017, 11, 10253–10263;
- 18bA. Kruve, K. Caprice, R. Lavendomme, J. M. Wollschlger, S. Schoder, H. V. Schrder, J. R. Nitschke, F. B. L. Cougnon, C. A. Schalley, Angew. Chem. Int. Ed. 2019, 58, 11324–11328; Angew. Chem. 2019, 131, 11446–11450.
- 19
- 19aD. Brynn Hibbert, P. Thordarson, Chem. Commun. 2016, 52, 12792–12805;
- 19bF. Ulatowski, K. Dabrowa, T. Balakier, J. Jurczak, J. Org. Chem. 2016, 81, 1746–1756.
- 20
- 20aA. J. Lowe, F. M. Pfeffer, P. Thordarson, Supramol. Chem. 2012, 24, 585–594;
- 20bP. Thordarson, Chem. Soc. Rev. 2011, 40, 1305–1323.
- 21B. Hamelin, L. Jullien, J. Chem. Soc. Faraday Trans. 1997, 93, 2153–2160.