Tailoring Co3d and O2p Band Centers to Inhibit Oxygen Escape for Stable 4.6 V LiCoO2 Cathodes
Weijin Kong
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJicheng Zhang
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDeniz Wong
Helmholtz-Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Search for more papers by this authorWenyun Yang
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871 China
Search for more papers by this authorJinbo Yang
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871 China
Search for more papers by this authorChristian Schulz
Helmholtz-Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Search for more papers by this authorCorresponding Author
Xiangfeng Liu
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorWeijin Kong
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJicheng Zhang
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDeniz Wong
Helmholtz-Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Search for more papers by this authorWenyun Yang
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871 China
Search for more papers by this authorJinbo Yang
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871 China
Search for more papers by this authorChristian Schulz
Helmholtz-Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Search for more papers by this authorCorresponding Author
Xiangfeng Liu
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorGraphical Abstract
The escape of surface oxygen and Li-insulator Co3O4 formation are the main causes for the capacity fading of 4.6 V LiCoO2 cathode. The oxygen escape is significantly inhibited by tailoring the Co3d and O2p band centers and enlarging their band gap with MgF2 doping, which enables a stable cycling of 4.6 V LiCoO2 cathode.
Abstract
High-voltage LiCoO2 delivers a high capacity but sharp fading is a critical issue, and the capacity decay mechanism is also poorly understood. Herein, we clarify that the escape of surface oxygen and Li-insulator Co3O4 formation are the main causes for the capacity fading of 4.6 V LiCoO2. We propose the inhibition of the oxygen escape for achieving stable 4.6 V LiCoO2 by tailoring the Co3d and O2p band center and enlarging their band gap with MgF2 doping. This enhances the ionicity of the Co−O bond and the redox activity of Co and improves cation migration reversibility. The inhibition of oxygen escape suppresses the formation of Li-insulator Co3O4 and maintains the surface structure integrity. Mg acts as a pillar, providing a stable and enlarged channel for fast Li+ intercalation/extraction. The modulated LiCoO2 shows almost zero strain and achieves a record capacity retention at 4.6 V: 92 % after 100 cycles at 1C and 86.4 % after 1000 cycles at 5C.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202112508-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. S. Whittingham, Chem. Rev. 2014, 114, 11414–11443;
- 1bM. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
- 2
- 2aL. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Chem. Soc. Rev. 2018, 47, 6505–6602;
- 2bJ. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167–1176;
- 2cJ. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013;
- 2dD. H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 2016, 8, 692–697.
- 3
- 3aX. Wang, X. Wang, Y. Lu, Ind. Eng. Chem. Res. 2019, 58, 10119–10139;
- 3bW. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006–3059;
- 3cF. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 2020, 49, 1569–1614.
- 4
- 4aL. Wang, J. Ma, C. Wang, X. Yu, R. Liu, F. Jiang, X. Sun, A. Du, X. Zhou, G. Cui, Adv. Sci. 2019, 6, 1900355;
- 4bS. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, S. X. Dou, Z. Guo, J. Cho, Adv. Energy Mater. 2017, 7, 1601507.
- 5J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, W. Yang, Y. Chu, Y. Liu, H. Yu, X.-Q. Yang, X. Huang, L. Chen, H. Li, Nat. Energy 2019, 4, 594–603.
- 6J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H. L. Zhuang, Y. Lu, Nat. Commun. 2018, 9, 4918.
- 7Z. Zhu, H. Wang, Y. Li, R. Gao, X. Xiao, Q. Yu, C. Wang, I. Waluyo, J. Ding, A. Hunt, J. Li, Adv. Mater. 2020, 32, 2005182.
- 8Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu, S. Yu, Z. Hu, C. T. Chen, G. Jiang, H. Gu, H. Lin, W. Luo, Y. Huang, Angew. Chem. 2021, 60, 4682–4688; Angew. Chem. 2021, 133, 4732–4738.
- 9J. Li, C. Lin, M. Weng, Y. Qiu, P. Chen, K. Yang, W. Huang, Y. Hong, J. Li, M. Zhang, C. Dong, W. Zhao, Z. Xu, X. Wang, K. Xu, J. Sun, F. Pan, Nat. Nanotechnol. 2021, 16, 599–605.
- 10
- 10aX. Ren, X. Zhang, Z. Shadike, L. Zou, H. Jia, X. Cao, M. H. Engelhard, B. E. Matthews, C. Wang, B. W. Arey, X. Q. Yang, J. Liu, J. G. Zhang, W. Xu, Adv. Mater. 2020, 32, 2004898;
- 10bD. Ensling, G. Cherkashinin, S. Schmid, S. Bhuvaneswari, A. Thissen, W. Jaegermann, Chem. Mater. 2014, 26, 3948–3956;
- 10cE. Hu, Q. Li, X. Wang, F. Meng, J. Liu, J.-N. Zhang, K. Page, W. Xu, L. Gu, R. Xiao, H. Li, X. Huang, L. Chen, W. Yang, X. Yu, X.-Q. Yang, Joule 2021, 5, 720–736.
- 11
- 11aX. Liu, Y. Tan, W. Wang, C. Li, Z. W. Seh, L. Wang, Y. Sun, Nano Lett. 2020, 20, 4558–4565;
- 11bM. Yoon, Y. Dong, Y. Yoo, S. Myeong, J. Hwang, J. Kim, S. H. Choi, J. Sung, S. J. Kang, J. Li, J. Cho, Adv. Funct. Mater. 2020, 30, 1907903.
- 12E. Hu, X. Yu, R. Lin, X. Bi, J. Lu, S. Bak, K.-W. Nam, H. L. Xin, C. Jaye, D. A. Fischer, K. Amine, X.-Q. Yang, Nat. Energy 2018, 3, 690–698.
- 13
- 13aQ. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y. A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareño, Y. Ren, W. Lu, Y. Li, Nat. Energy 2018, 3, 936–943;
- 13bY. Xu, E. Hu, K. Zhang, X. Wang, V. Borzenets, Z. Sun, P. Pianetta, X. Yu, Y. Liu, X.-Q. Yang, H. Li, ACS Energy Lett. 2017, 2, 1240–1245.
- 14
- 14aJ. Chen, W. Deng, X. Gao, S. Yin, L. Yang, H. Liu, G. Zou, H. Hou, X. Ji, ACS Nano 2021, 15, 6061–6104;
- 14bR. Gu, R. Qian, Y. Lyu, B. Guo, ACS Sustainable Chem. Eng. 2020, 8, 9346–9355;
- 14cQ. Lin, W. Guan, J. Zhou, J. Meng, W. Huang, T. Chen, Q. Gao, X. Wei, Y. Zeng, J. Li, Z. Zhang, Nano Energy 2020, 76, 105021;
- 14dC. Zhang, Y. Feng, B. Wei, C. Liang, L. Zhou, D. G. Ivey, P. Wang, W. Wei, Nano Energy 2020, 75, 104995.
- 15
- 15aK. Nie, X. Sun, J. Wang, Y. Wang, W. Qi, D. Xiao, J.-N. Zhang, R. Xiao, X. Yu, H. Li, X. Huang, L. Chen, J. Power Sources 2020, 470, 228423;
- 15bW. Kong, D. Zhou, D. Ning, W. Yang, D. Wong, J. Zhang, Q. Li, J. Yang, C. Schulz, X. Liu, J. Electrochem. Soc. 2021, 168, 030528.
- 16
- 16aX. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu, H. Chen, F. Li, P. Liu, B. Yu, X. Wang, J. Liu, Y. Chen, M. Liu, Adv. Sci. 2019, 6, 1801898;
- 16bD. A. Kuznetsov, J. Peng, L. Giordano, Y. Román-Leshkov, Y. Shao-Horn, J. Phys. Chem. C 2020, 124, 6562–6570.
- 17
- 17aL. Xue, S. V. Savilov, V. V. Lunin, H. Xia, Adv. Funct. Mater. 2018, 28, 1705836;
- 17bN. Wu, Y. Zhang, Y. Guo, S. Liu, H. Liu, H. Wu, ACS Appl. Mater. Interfaces 2016, 8, 2723–2731.
- 18
- 18aK. Liu, S. Tan, J. Moon, C. J. Jafta, C. Li, T. Kobayashi, H. Lyu, C. A. Bridges, S. Men, W. Guo, Y. Sun, J. Zhang, M. P. Paranthaman, X.-G. Sun, S. Dai, Adv. Energy Mater. 2020, 10, 2000135;
- 18bJ. W. Fergus, J. Power Sources 2010, 195, 939–954.
- 19
- 19aS. Li, K. Li, J. Zheng, Q. Zhang, B. Wei, X. Lu, J. Phys. Chem. Lett. 2019, 10, 7537–7546;
- 19bD. Eum, B. Kim, S. J. Kim, H. Park, J. Wu, S. P. Cho, G. Yoon, M. H. Lee, S. K. Jung, W. Yang, W. M. Seong, K. Ku, O. Tamwattana, S. K. Park, I. Hwang, K. Kang, Nat. Mater. 2020, 19, 419–427.
- 20
- 20aX. Dai, A. Zhou, J. Xu, B. Yang, L. Wang, J. Li, J. Power Sources 2015, 298, 114–122;
- 20bY. Wang, Q. Zhang, Z. C. Xue, L. Yang, J. Wang, F. Meng, Q. Li, H. Pan, J. N. Zhang, Z. Jiang, W. Yang, X. Yu, L. Gu, H. Li, Adv. Energy Mater. 2020, 10, 2001413.
- 21N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, S. Komaba, J. Am. Chem. Soc. 2011, 133, 4404–4419.
- 22K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y.-S. Liu, K. Edström, J. Guo, A. V. Chadwick, L. C. Duda, P. G. Bruce, Nat. Chem. 2016, 8, 684–691.
- 23
- 23aC. Schulz, K. Lieutenant, J. Xiao, T. Hofmann, D. Wong, K. Habicht, J. Synchrotron Radiat. 2020, 27, 238–249;
- 23bH. Hafiz, K. Suzuki, B. Barbiellini, N. Tsuji, N. Yabuuchi, K. Yamamoto, Y. Orikasa, Y. Uchimoto, Y. Sakurai, H. Sakurai, A. Bansil, V. Viswanathan, Nature 2021, 594, 213–216.
- 24
- 24aQ. Li, Z. W. Lebens-Higgins, Y. Li, Y. S. Meng, Y. D. Chuang, L. F. J. Piper, Z. Liu, W. Yang, J. Phys. Chem. Lett. 2021, 12, 1138–1143;
- 24bI. Abate, S. Y. Kim, C. D. Pemmaraju, M. F. Toney, W. Yang, T. P. Devereaux, W. C. Chueh, L. F. Nazar, Angew. Chem. Int. Ed. 2021, 60, 10880–10887; Angew. Chem. 2021, 133, 10975–10982;
- 24cK. Zhou, S. Zheng, F. Ren, J. Wu, H. Liu, M. Luo, X. Liu, Y. Xiang, C. Zhang, W. Yang, L. He, Y. Yang, Energy Storage Mater. 2020, 32, 234–243.
- 25
- 25aJ. Lee, J. K. Papp, R. J. Clement, S. Sallis, D. H. Kwon, T. Shi, W. Yang, B. D. McCloskey, G. Ceder, Nat. Commun. 2017, 8, 981;
- 25bS. Ramakrishnan, B. Park, J. Wu, W. Yang, B. D. McCloskey, J. Am. Chem. Soc. 2020, 142, 8522–8531;
- 25cM. Ben Yahia, J. Vergnet, M. Saubanere, M. L. Doublet, Nat. Mater. 2019, 18, 496–502.
- 26F. Zhang, S. Lou, S. Li, Z. Yu, Q. Liu, A. Dai, C. Cao, M. F. Toney, M. Ge, X. Xiao, W. K. Lee, Y. Yao, J. Deng, T. Liu, Y. Tang, G. Yin, J. Lu, D. Su, J. Wang, Nat. Commun. 2020, 11, 3050.
- 27R. Sharpe, R. A. House, M. J. Clarke, D. Forstermann, J. J. Marie, G. Cibin, K. J. Zhou, H. Y. Playford, P. G. Bruce, M. S. Islam, J. Am. Chem. Soc. 2020, 142, 21799–21809.
- 28
- 28aR. Gao, D. Zhou, D. Ning, W. Zhang, L. Huang, F. Sun, G. Schuck, G. Schumacher, Z. Hu, X. Liu, Adv. Funct. Mater. 2020, 30, 2002223;
- 28bY. Matsuda, N. Kuwata, T. Okawa, A. Dorai, O. Kamishima, J. Kawamura, Solid State Ionics 2019, 335, 7–14.
- 29Y. Huang, Y. Dong, S. Li, J. Lee, C. Wang, Z. Zhu, W. Xue, Y. Li, J. Li, Adv. Energy Mater. 2021, 11, 2000997.
- 30M. E. Arroyo y de Dompablo, U. Amador, J. M. Tarascon, J. Power Sources 2007, 174, 1251–1257.
- 31X. Yu, Nat. Energy 2021, 6, 572–573.