Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device**
Dr. Qing Zhou
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018 Shandong, China
Search for more papers by this authorHong Yang
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorXinghua Chen
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorYuan Xu
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorDan Han
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorDr. Sisi Zhou
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorProf. Songqin Liu
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorProf. Yanfei Shen
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorCorresponding Author
Prof. Yuanjian Zhang
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorDr. Qing Zhou
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018 Shandong, China
Search for more papers by this authorHong Yang
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorXinghua Chen
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorYuan Xu
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorDan Han
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorDr. Sisi Zhou
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorProf. Songqin Liu
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorProf. Yanfei Shen
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorCorresponding Author
Prof. Yuanjian Zhang
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv.12279947).
Graphical Abstract
The reaction selectivity of a nanozyme system was enhanced by screening and channeling of substrates. A catalytic cascade incorporating N-doped carbon nanocages with oxidase-like activity, and Prussian blue nanoparticles with peroxidase-like activity, improved reaction selectivity by more than 2000 times.
Abstract
Surpassing natural enzymes in cost, stability and mass production, nanozymes have attracted wide attention in fields from disease diagnosis to tumor therapy. However, nanozymes intrinsically have low reaction selectivity, which significantly restricts their applications. A general method is reported to address this challenge by following a biomimetic operation principle of substrates channeling and screening. Two oxidase- and peroxidase-like nanozymes (i.e., emerging N-doped carbon nanocages and Prussian blue nanoparticles), were cascaded as a proof of concept to improve the reaction selectivity in transforming the substrate into the targeted product by more than 2000 times. The cascaded nanozymes were also adopted to a spatially confined microfluidic device, leading to more than 100-fold enhancement of the reaction efficiency due to signal amplification.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202112453-sup-0001-misc_information.pdf987 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett, X. Y. Yan, Nat. Nanotechnol. 2007, 2, 577–583.
- 2
- 2aM. Comotti, C. Della Pina, R. Matarrese, M. Rossi, Angew. Chem. Int. Ed. 2004, 43, 5812–5815; Angew. Chem. 2004, 116, 5936–5939;
- 2bX. M. Shen, W. Q. Liu, X. J. Gao, Z. H. Lu, X. C. Wu, X. F. Gao, J. Am. Chem. Soc. 2015, 137, 15882–15891.
- 3
- 3aA. Asati, S. Santra, C. Kaittanis, S. Nath, J. M. Perez, Angew. Chem. Int. Ed. 2009, 48, 2308–2312; Angew. Chem. 2009, 121, 2344–2348;
- 3bN. Singh, M. A. Savanur, S. Srivastava, P. D'Silva, G. Mugesh, Angew. Chem. Int. Ed. 2017, 56, 14267–14271; Angew. Chem. 2017, 129, 14455–14459.
- 4
- 4aM. S. Kim, J. Lee, H. S. Kim, A. Cho, K. H. Shim, T. N. Le, S. S. A. An, J. W. Han, M. I. Kim, J. Lee, Adv. Funct. Mater. 2020, 30, 1905410;
- 4bY. J. Song, K. G. Qu, C. Zhao, J. S. Ren, X. G. Qu, Adv. Mater. 2010, 22, 2206–2210;
- 4cJ. Y. Chen, Y. Shu, H. L. Li, Q. Xu, X. Y. Hu, Talanta 2018, 189, 254–261.
- 5
- 5aK. L. Fan, J. Q. Xi, L. Fan, P. X. Wang, C. H. Zhu, Y. Tang, X. D. Xu, M. M. Liang, B. Jiang, X. Y. Yan, L. Z. Gao, Nat. Commun. 2018, 9, 1140;
- 5bF. He, L. Mi, Y. F. Shen, T. Mori, S. Q. Liu, Y. J. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 35327–35333;
- 5cL. Huang, J. X. Chen, L. F. Gan, J. Wang, S. J. Dong, Sci. Adv. 2019, 5, eaav5490;
- 5dB. L. Xu, H. Wang, W. W. Wang, L. Z. Gao, S. S. Li, X. T. Pan, H. Y. Wang, H. L. Yang, X. Q. Meng, Q. W. Wu, L. R. Zheng, S. M. Chen, X. H. Shi, K. L. Fan, X. Y. Yan, H. Y. Liu, Angew. Chem. Int. Ed. 2019, 58, 4911–4916; Angew. Chem. 2019, 131, 4965–4970.
- 6Q. Liu, K. W. Wan, Y. X. Shang, Z. G. Wang, Y. Y. Zhang, L. R. Dai, C. Wang, H. Wang, X. H. Shi, D. S. Liu, B. Q. Ding, Nat. Mater. 2021, 20, 395–402.
- 7
- 7aJ. J. X. Wu, X. Y. Wang, Q. Wang, Z. P. Lou, S. R. Li, Y. Y. Zhu, L. Qin, H. Wei, Chem. Soc. Rev. 2019, 48, 1004–1076;
- 7bH. Wang, K. Wan, X. Shi, Adv. Mater. 2019, 31, 1805368;
- 7cY. Y. Huang, J. S. Ren, X. G. Qu, Chem. Rev. 2019, 119, 4357–4412;
- 7dD. W. Jiang, D. L. Ni, Z. T. Rosenkrans, P. Huang, X. Y. Yan, W. B. Cai, Chem. Soc. Rev. 2019, 48, 3683–3704.
- 8
- 8aJ. Y. Zhang, J. W. Liu, Luminescence 2020, 35, 1185–1194;
- 8bF. Y. Tian, J. Zho, B. N. Jiao, Y. He, Nanoscale 2019, 11, 9547–9555;
- 8cP. Nandhakumar, G. Kim, S. Park, S. Kim, S. Kim, J. K. Park, N. S. Lee, Y. H. Yoon, H. Yang, Angew. Chem. Int. Ed. 2020, 59, 22419–22422; Angew. Chem. 2020, 132, 22605–22608;
- 8dX. X. Zheng, Q. Liu, C. Jing, Y. Li, D. Li, W. J. Luo, Y. Q. Wen, Y. He, Q. Huang, Y. T. Long, C. H. Fan, Angew. Chem. Int. Ed. 2011, 50, 11994–11998; Angew. Chem. 2011, 123, 12200–12204.
- 9
- 9aL. Gao, Y. Zhang, L. N. Zhao, W. C. Niu, Y. H. Tang, F. P. Gao, P. J. Cai, Q. Yuan, X. Y. Wang, H. D. Jiang, X. Y. Gao, Sci. Adv. 2020, 6, eabb1421;
- 9bS. Bhattacharyya, S. R. Ali, M. Venkateswarulu, P. Howlader, E. Zangrando, M. De, P. S. Mukherjee, J. Am. Chem. Soc. 2020, 142, 18981–18989;
- 9cW. Y. Zhen, Y. Liu, W. Wang, M. C. Zhang, W. X. Hu, X. D. Jia, C. Wang, X. E. Jiang, Angew. Chem. Int. Ed. 2020, 59, 9491–9497; Angew. Chem. 2020, 132, 9578–9584.
- 10Y. Xu, J. Xue, Q. Zhou, Y. J. Zheng, X. H. Chen, S. Q. Liu, Y. F. Shen, Y. J. Zhang, Angew. Chem. Int. Ed. 2020, 59, 14498–14503; Angew. Chem. 2020, 132, 14606–14611.
- 11W. W. Wu, L. Huang, E. K. Wang, S. J. Dong, Chem. Sci. 2020, 11, 9741–9756.
- 12
- 12aJ. J. X. Wu, S. R. Li, H. Wei, Chem. Commun. 2018, 54, 6520–6530;
- 12bQ. Wang, X. Zhang, L. Huang, Z. Zhang, S. Dong, Angew. Chem. Int. Ed. 2017, 56, 16082–16085; Angew. Chem. 2017, 129, 16298–16301;
- 12cY. H. Hu, X. J. J. Gao, Y. Y. Zhu, F. Muhammad, S. H. Tan, W. Cao, S. C. Lin, Z. Jin, X. F. Gao, H. Wei, Chem. Mater. 2018, 30, 6431–6439.
- 13Z. J. Zhang, X. H. Zhang, B. W. Liu, J. W. Liu, J. Am. Chem. Soc. 2017, 139, 5412–5419.
- 14Y. Liu, L. Chen, Y. Chen, Y. Zhang, Angew. Chem. Int. Ed. 2021, 60, 7654–7658; Angew. Chem. 2021, 133, 7732–7736.
- 15
- 15aX. H. Chen, L. F. Zhao, K. Q. Wu, H. Yang, Q. Zhou, Y. Xu, Y. J. Zheng, Y. F. Shen, S. Q. Liu, Y. J. Zhang, Chem. Sci. 2021, 12, 8865–8871;
- 15bY. Wang, G. Jia, X. Cui, X. Zhao, Q. Zhang, L. Gu, L. Zheng, L. H. Li, Q. Wu, D. J. Singh, D. Matsumura, T. Tsuji, Y.-T. Cui, J. Zhao, W. Zheng, Chem 2021, 7, 436–449;
- 15cM. H. Li, J. X. Chen, W. W. Wu, Y. X. Fang, S. J. Dong, J. Am. Chem. Soc. 2020, 142, 15569–15574.
- 16A. Wagner, Metabolic networks and their evolution, Vol. 751, Springer Berlin, Berlin, 2012.
- 17
- 17aW. P. Klein, R. P. Thomsen, K. B. Turner, S. A. Walper, J. Vranish, J. Kjems, M. G. Ancona, I. L. Medintz, ACS Nano 2019, 13, 13677–13689;
- 17bW. Chen, J. S. Wu, X. H. Xia, ACS Nano 2008, 2, 959–965;
- 17cM. Vázquez-González, C. Wang, I. Willner, Nat. Catal. 2020, 3, 256–273.
- 18
- 18aA. Küchler, M. Yoshimoto, S. Luginbuhl, F. Mavelli, P. Walde, Nat. Nanotechnol. 2016, 11, 409–420;
- 18bV. Smeets, W. Baaziz, O. Ersen, E. M. Gaigneaux, C. Boissiere, C. Sanchez, D. P. Debecker, Chem. Sci. 2020, 11, 954–961;
- 18cC. M. A. Parlett, M. A. Isaacs, S. K. Beaumont, L. M. Bingham, N. S. Hondow, K. Wilson, A. F. Lee, Nat. Mater. 2016, 15, 178–182.
- 19
- 19aS. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593–5597;
- 19bQ. Wu, L. J. Yang, X. Z. Wang, Z. Hu, Adv. Mater. 2020, 32, 1904177.
- 20M. A. Komkova, E. E. Karyakina, A. A. Karyakin, J. Am. Chem. Soc. 2018, 140, 11302–11307.
- 21Y. Wang, Z. W. Zhang, G. R. Jia, L. R. Zheng, J. X. Zhao, X. Q. Cui, Chem. Commun. 2019, 55, 5271–5274.
- 22H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science 2017, 357, 479–483.
- 23
- 23aL. Jiao, W. Q. Xu, H. Y. Yan, Y. Wu, C. R. Liu, D. Du, Y. H. Lin, C. Z. Zhu, Anal. Chem. 2019, 91, 11994–11999;
- 23bD. Wu, J. Li, S. Xu, Q. Xie, Y. Pan, X. Liu, R. Ma, H. Zheng, M. Gao, W. Wang, J. Li, X. Cai, F. Jaouen, R. Li, J. Am. Chem. Soc. 2020, 142, 19602–19610.
- 24J. Y. Zhang, J. X. Chen, S. Peng, S. Y. Peng, Z. Z. Zhang, Y. X. Tong, P. W. Miller, X. P. Yan, Chem. Soc. Rev. 2019, 48, 2566–2595.
- 25
- 25aX. Fang, J. Wang, X. Q. Cui, Y. H. Zhang, R. F. Zhu, H. Zhao, Z. X. Li, Colloids Surf. A 2019, 575, 66–74;
- 25bM. Q. Chi, Y. Zhu, L. W. Jing, C. Wang, X. F. Lu, Talanta 2019, 191, 171–179;
- 25cH. N. Guan, B. L. Han, D. Z. Gong, Y. Song, B. Liu, N. Zhang, Spectrochim. Acta Part A 2019, 222, 117277;
- 25dS. S. Fan, M. G. Zhao, L. J. Ding, H. Li, S. G. Chen, Biosens. Bioelectron. 2017, 89, 846–852;
- 25eJ. W. Zhang, H. T. Zhang, Z. Y. Du, X. Q. Wang, S. H. Yua, H. L. Jiang, Chem. Commun. 2014, 50, 1092–1094.
- 26
- 26aP. Zhang, D. Sun, A. Cho, S. Weon, S. Lee, J. Lee, J. W. Han, D. P. Kim, W. Choi, Nat. Commun. 2019, 10, 940;
- 26bP. B. O'Mara, P. Wilde, T. M. Benedetti, C. Andronescu, S. Cheong, J. J. Gooding, R. D. Tilley, W. Schuhmann, J. Am. Chem. Soc. 2019, 141, 14093–14097;
- 26cY. F. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. J. Yu, S. C. Lin, B. Jiang, X. Z. Zhao, L. Y. Miao, C. W. Wei, Q. Y. Liu, Y. W. Lin, Y. Du, C. J. Butch, H. Wei, Sci. Adv. 2020, 6, eabb2695.
- 27R. Bonomi, A. Cazzolaro, A. Sansone, P. Scrimin, L. J. Prins, Angew. Chem. Int. Ed. 2011, 50, 2307–2312; Angew. Chem. 2011, 123, 2355–2360.