Fire-Retardant, Stable-Cycling and High-Safety Sodium Ion Battery
Zhuo Yang
Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035 China
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
These authors contributed equally to this work.
Search for more papers by this authorJian He
School of Physics and Electronics, Hunan University, Changsha, 410082 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Wei-Hong Lai
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
Search for more papers by this authorDr. Jian Peng
Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, 2500 Australia
Search for more papers by this authorDr. Xiao-Hao Liu
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorDr. Xiang-Xi He
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorXu-Feng Guo
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorDr. Li Li
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorProf. Yun Qiao
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorProf. Jian-Min Ma
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorProf. Minghong Wu
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Prof. Shu-Lei Chou
Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035 China
Search for more papers by this authorZhuo Yang
Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035 China
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
These authors contributed equally to this work.
Search for more papers by this authorJian He
School of Physics and Electronics, Hunan University, Changsha, 410082 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Wei-Hong Lai
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
Search for more papers by this authorDr. Jian Peng
Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, 2500 Australia
Search for more papers by this authorDr. Xiao-Hao Liu
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorDr. Xiang-Xi He
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorXu-Feng Guo
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorDr. Li Li
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorProf. Yun Qiao
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorProf. Jian-Min Ma
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorProf. Minghong Wu
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Prof. Shu-Lei Chou
Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035 China
Search for more papers by this authorGraphical Abstract
Safety is always a topic of concern after reports of devices catching fire due to battery failure. Using non-flammable electrolyte as an ultimate solution is difficult to be applied to commercial batteries because of various problems such as poor compatibility, high viscosity and so on. Here, we report a non-flammable electrolyte with excellent comprehensive performance, and applied it to sodium-ion pouch cells with different promising materials.
Abstract
The safety of energy storage equipment has always been a stumbling block to the development of battery, and sodium ion battery is no exception. However, as an ultimate solution, the use of non-flammable electrolyte is susceptible to the side effects, and its poor compatibility with electrode, causing failure of batteries. Here, we report a non-flammable electrolyte design to achieve high-performance sodium ion battery, which resolves the dilemma via regulating the solvation structure of electrolyte by hydrogen bonds and optimizing the electrode–electrolyte interphase. The reported non-flammable electrolyte allows stable charge-discharge cycling of both sodium vanadium phosphate@hard carbon and Prussian blue@hard carbon full pouch cell for more than 120 cycles with a capacity retention of >85 % and high cycling Coulombic efficiency (99.7 %).
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202112382-sup-0001-misc_information.pdf5.1 MB | Supporting Information |
anie202112382-sup-0001-Video_1.mp44.6 MB | Supporting Information |
anie202112382-sup-0001-Video_2.mp422.3 MB | Supporting Information |
anie202112382-sup-0001-Video_3.mp428.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403–10473;
- 1bQ. Zheng, Y. Yamada, R. Shang, S. Ko, Y. Y. Lee, K. Kim, E. Nakamura, A. Yamada, Nat. Energy 2020, 5, 291–298;
- 1cJ. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Nat. Energy 2018, 3, 22–29.
- 2
- 2aJ. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529–3614;
- 2bW. J. Li, C. Han, W. Wang, F. Gebert, S. L. Chou, H. K. Liu, X. Zhang, S. X. Dou, Adv. Energy Mater. 2017, 7, 1700274;
- 2cJ. Peng, M. Ou, H. Yi, X. Sun, Y. Zhang, B. Zhang, Y. Ding, F. Wang, S. Gu, C. A. López, W. Zhang, Y. Liu, J. Fang, P. Wei, Y. Li, L. Miao, J. Jiang, C. Fang, Q. Li, M. T. Fernández-Díaz, J. A. Alonso, S. Chou, J. Han, Energy Environ. Sci. 2021, 14, 3130–3140.
- 3
- 3aY. Huang, L. Zhao, L. Li, M. Xie, F. Wu, R. Chen, Adv. Mater. 2019, 31, 1808393;
- 3bX. Zhang, C. Fan, P. a. Xiao, S. Han, Electrochim. Acta 2016, 222, 221–231.
- 4S. Chen, J. Zheng, L. Yu, X. Ren, M. H. Engelhard, C. Niu, H. Lee, W. Xu, J. Xiao, J. Liu, J. G. Zhang, Joule 2018, 2, 1548–1558.
- 5
- 5aQ. Zhang, S. Liu, Z. Lin, K. Wang, M. Chen, K. Xu, W. Li, Nano Energy 2020, 74, 104860;
- 5bY. Jin, Y. Xu, P. M. L. Le, T. D. Vo, Q. Zhou, X. Qi, M. H. Engelhard, B. E. Matthews, H. Jia, Z. Nie, C. Niu, C. Wang, Y. Hu, H. Pan, J. G. Zhang, ACS Energy Lett. 2020, 5, 3212–3220.
- 6
- 6aX. Jiang, X. Liu, Z. Zeng, L. Xiao, X. Ai, H. Yang, Y. Cao, Adv. Energy Mater. 2018, 8, 1802176;
- 6bJ. K. Feng, X. J. Sun, X. P. Ai, Y. L. Cao, H. X. Yang, J. Power Sources 2008, 184, 570–573.
- 7X. Wang, E. Yasukawa, S. Kasuya, J. Electrochem. Soc. 2001, 148, A1066–A1071.
- 8Y. Yamada, J. H. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269–280.
- 9X. Liu, X. Zheng, Y. Dai, W. Wu, Y. Huang, H. Fu, Y. Huang, W. Luo, Adv. Funct. Mater. 2021, 31, 2103522.
- 10X. Y. Zheng, Z. Y. Gu, X. Y. Liu, Z. Q. Wang, J. Y. Wen, X. L. Wu, W. Luo, Y. H. Huang, Energy Environ. Sci. 2020, 13, 1788–1798.
- 11
- 11aJ. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing, G. Cai, S. Yu, H. Zhou, T. A. Pascal, Z. Chen, P. Liu, Nat. Energy 2021, 6, 303–313;
- 11bD. A. Rakov, F. Chen, S. A. Ferdousi, H. Li, T. Pathirana, A. N. Simonov, P. C. Howlett, R. Atkin, M. Forsyth, Nat. Mater. 2020, 19, 1096–1101.
- 12
- 12aX. Ren, S. Chen, H. Lee, D. Mei, M. H. Engelhard, S. D. Burton, W. Zhao, J. Zheng, Q. Li, M. S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y. S. Meng, J. Liu, J. G. Zhang, W. Xu, Chem 2018, 4, 1877–1892;
- 12bS. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, 1706102;
- 12cH. Jia, L. Zou, P. Gao, X. Cao, W. Zhao, Y. He, M. H. Engelhard, S. D. Burton, H. Wang, X. Ren, Q. Li, R. Yi, X. Zhang, C. Wang, Z. Xu, X. Li, J. G. Zhang, W. Xu, Adv. Energy Mater. 2019, 9, 1900784.
- 13S. Jiao, X. Ren, R. Cao, M. H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, N. Liu, B. D. Adams, C. Ma, J. Liu, J. G. Zhang, W. Xu, Nat. Energy 2018, 3, 739–746.
- 14J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S. Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 7366–7375; Angew. Chem. 2021, 133, 7442–7451.
- 15
- 15aZ. Jian, L. Zhao, H. Pan, Y. S. Hu, H. Li, W. Chen, L. Chen, Electrochem. Commun. 2012, 14, 86–89;
- 15bW. Wang, Y. Gang, Z. Hu, Z. Yan, W. Li, Y. Li, Q. F. Gu, Z. Wang, S. L. Chou, H. K. Liu, S. X. Dou, Nat. Commun. 2020, 11, 980.
- 16J. L. Xia, D. Yan, L. P. Guo, X. L. Dong, W. C. Li, A. H. Lu, Adv. Mater. 2020, 32, 2000447.
- 17
- 17aP. Bai, X. Han, Y. He, P. Xiong, Y. Zhao, J. Sun, Y. Xu, Energy Storage Mater. 2020, 25, 324–333;
- 17bH. Yildirim, A. Kinaci, M. K. Chan, J. P. Greeley, ACS Appl. Mater. Interfaces 2015, 7, 18985–18996.
- 18G. G. Eshetu, G. A. Elia, M. Armand, M. Forsyth, S. Komaba, T. Rojo, S. Passerini, Adv. Energy Mater. 2020, 10, 2000093.
- 19X. Ren, L. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. Niu, B. E. Matthews, Z. Zhu, C. Wang, B. W. Arey, J. Xiao, J. Liu, J.-G. Zhang, W. Xu, Joule 2019, 3, 1662–1676.
- 20X. Ren, P. Gao, L. Zou, S. Jiao, X. Cao, X. Zhang, H. Jia, M. H. Engelhard, B. E. Matthews, H. Wu, H. Lee, C. Niu, C. Wang, B. W. Arey, J. Xiao, J. Liu, J. G. Zhang, W. Xu, Proc. Natl. Acad. Sci. USA 2020, 117, 28603–28613.
- 21
- 21aL. El Ouatani, R. Dedryvère, C. Siret, P. Biensan, D. Gonbeau, J. Electrochem. Soc. 2009, 156, A103;
- 21bL. El Ouatani, R. Dedryvère, C. Siret, P. Biensan, S. Reynaud, P. Iratçabal, D. Gonbeau, J. Electrochem. Soc. 2009, 156, A468.
- 22
- 22aM. Carboni, J. Manzi, A. R. Armstrong, J. Billaud, S. Brutti, R. Younesi, ChemElectroChem 2019, 6, 1745–1753;
- 22bG. G. Eshetu, T. Diemant, M. Hekmatfar, S. Grugeon, R. J. Behm, S. Laruelle, M. Armand, S. Passerini, Nano Energy 2019, 55, 327–340.
- 23
- 23aC. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen, M. Sun, S. Xu, Y. Wu, C. Zhang, J. Ma, C. Wang, W. Hu, Angew. Chem. Int. Ed. 2021, 60, 10871–10879; Angew. Chem. 2021, 133, 10966–10974;
- 23bL. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X. Q. Yang, C. Wang, J. Am. Chem. Soc. 2020, 142, 21404–21409.
- 24Z. Jiang, Z. Zeng, X. Liang, L. Yang, W. Hu, C. Zhang, Z. Han, J. Feng, J. Xie, Adv. Funct. Mater. 2021, 31, 2005991.