Emergence of a Promiscuous Peroxidase Under Non-Equilibrium Conditions**
Sumit Pal
Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246 India
Search for more papers by this authorAntara Reja
Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246 India
Search for more papers by this authorSubhajit Bal
Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246 India
Search for more papers by this authorBaishakhi Tikader
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
Search for more papers by this authorCorresponding Author
Dibyendu Das
Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246 India
Search for more papers by this authorSumit Pal
Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246 India
Search for more papers by this authorAntara Reja
Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246 India
Search for more papers by this authorSubhajit Bal
Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246 India
Search for more papers by this authorBaishakhi Tikader
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
Search for more papers by this authorCorresponding Author
Dibyendu Das
Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246 India
Search for more papers by this authorDedicated to Dr. Souvik Maiti on the occasion of his 50th Birthday
A previous version of this manuscript has been deposited on a preprint server ( Chemrxiv(10.26434/chemrxiv.13558151.v1)).
Graphical Abstract
Substrate-induced generation of a transient catalytic microphase was shown in presence of a single amino acid functionalized fatty acid and a cofactor hemin. The transient state exhibited acceleration of catalytic potential resulting in degradation of the substrate. Furthermore, latent catalytic function was displayed to hydrolyze a precursor to yield the same substrate suggesting promiscuous activity.
Abstract
Herein, we report the substrate induced generation of a transient catalytic microenvironment from a single amino acid functionalized fatty acid in presence of a cofactor hemin. The catalytic state accessed under non-equilibrium conditions showed acceleration of peroxidase activity resulting in degradation of the substrate and subsequently led to disassembly. Equilibrated systems could not access the three-dimensional microphases and showed substantially lower catalytic activity. Further, the assembled state showed latent catalytic function (promiscuity) to hydrolyze a precursor to yield the same substrate. Consequently, the assembly demonstrated protometabolism by exploiting the peroxidase-hydrolase cascade to augment the lifetime and the mechanical properties of the catalytic state.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202111857-sup-0001-misc_information.pdf962.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Ragazzon, L. J. Prins, Nat. Nanotechnol. 2018, 13, 882–889;
- 1bR. D. Astumian, Nat. Commun. 2019, 10, 3837;
- 1cG. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418–2421.
- 2
- 2aJ. L. England, Nat. Nanotechnol. 2015, 10, 919–923;
- 2bR. D. Astumian, Chem. Commun. 2018, 54, 427–444;
- 2cM. M. Hossain, J. L. Atkinson, C. S. Hartley, Angew. Chem. Int. Ed. 2020, 59, 13807–13813; Angew. Chem. 2020, 132, 13911–13917.
- 3
- 3aH. Hess, J. L. Ross, Chem. Soc. Rev. 2017, 46, 5570–5587;
- 3bT. David-Pfeuty, H. P. Erickson, D. Pantaloni, Proc. Natl. Acad. Sci. USA 1977, 74, 5372–5376;
- 3cM. Caplow, J. Shanks, J. Biol. Chem. 1990, 265, 8935–8941;
- 3dP. Carbonell, G. Lecointre, J. L. Faulon, J. Biol. Chem. 2011, 286, 43994–44004.
- 4
- 4aR. B. Leveson-Gower, C. Mayer, G. Roelfes, Nat. Rev. Chem. 2019, 3, 687–705;
- 4bS. N. Semenov, A. S. Y. R. Wong, M. van der Made, S. G. J. Postma, J. Groen, H. W. H. van Roekel, T. F. A. de Greef, W. T. S. Huck, Nat. Chem. 2015, 7, 160–165.
- 5
- 5aC. G. Pappas, P. K. Mandal, B. Liu, B. Kauffmann, X. Miao, D. Komáromy, W. Hoffmann, C. Manz, R. Chang, K. Liu, K. Pagel, I. Huc, S. Otto, Nat. Chem. 2020, 12, 1180–1186;
- 5bJ. Greenwald, M. P. Friedmann, R. Riek, Angew. Chem. Int. Ed. 2016, 55, 11609–11613; Angew. Chem. 2016, 128, 11781–11785;
- 5cO. Carny, E. Gazit, FASEB J. 2005, 19, 1051–1055;
- 5dT. Tamura, I. Hamachi, J. Am. Chem. Soc. 2019, 141, 2782–2799;
- 5eK. Gentile, A. Somasundar, A. Bhide, A. Sen, Chem 2020, 6, 2174–2185.
- 6
- 6aG. Ashkenasy, T. M. Hermans, S. Otto, A. F. Taylor, Chem. Soc. Rev. 2017, 46, 2543–2554;
- 6bH. S. Azevedo, S. L. Perry, P. A. Korevaar, D. Das, Nat. Chem. 2020, 12, 793–794;
- 6cJ. Ottelé, A. S. Hussain, C. Mayer, S. Otto, Nat. Catal. 2020, 3, 547–553;
- 6dE. te Brinke, J. Groen, A. Herrmann, H. A. Heus, G. Rivas, E. Spruijt, W. T. S. Huck, Nat. Nanotechnol. 2018, 13, 849–855;
- 6eL. Tian, M. Lei, J. Liu, A. J. Patil, B. W. Drinkwater, S. Mann, ACS Cent. Sci. 2018, 4, 1551–1558.
- 7
- 7aP. Solís Muñana, G. Ragazzon, J. Dupont, C. Z.-J. Ren, L. J. Prins, J. L.-Y. Chen, Angew. Chem. Int. Ed. 2018, 57, 16469–16474; Angew. Chem. 2018, 130, 16707–16712;
- 7bS. Bal, C. Ghosh, T. Ghosh, R. K. Vijayaraghavan, D. Das, Angew. Chem. Int. Ed. 2020, 59, 13506–13510; Angew. Chem. 2020, 132, 13608–13612;
- 7cR. Chen, S. Neri, L. J. Prins, Nat. Nanotechnol. 2020, 15, 868–874;
- 7dS. P. Afrose, S. Bal, A. Chatterjee, K. Das, D. Das, Angew. Chem. Int. Ed. 2019, 58, 15783–15787; Angew. Chem. 2019, 131, 15930–15934;
- 7eJ. Deng, A. Walther, Nat. Commun. 2020, 11, 3658;
- 7fS. P. Afrose, C. Ghosh, D. Das, Chem. Sci. 2021, https://doi.org/10.1039/d1sc03492h.
- 8
- 8aK. Dai, J. R. Fores, C. Wanzke, B. Winkeljann, A. M. Bergmann, O. Lieleg, J. Boekhoven, J. Am. Chem. Soc. 2020, 142, 14142–14149;
- 8bN. Singh, B. Lainer, G. J. M. Formon, S. De Piccoli, T. M. Hermans, J. Am. Chem. Soc. 2020, 142, 4083–4087;
- 8cM. Tena-Solsona, C. Wanzke, B. Riess, A. R. Bausch, J. Boekhoven, Nat. Commun. 2018, 9, 2044;
- 8dA. Sorrenti, J. Leira-Iglesias, A. Sato, T. M. Hermans, Nat. Commun. 2017, 8, 15899;
- 8eJ. Heckel, S. Loescher, R. T. Mathers, A. Walther, Angew. Chem. Int. Ed. 2021, 60, 7117–7125; Angew. Chem. 2021, 133, 7193–7201.
- 9
- 9aJ. Boekhoven, W. E. Hendriksen, G. J. Koper, R. Eelkema, J. H. van Esch, Science 2015, 349, 1075–1079;
- 9bS. Debnath, S. Roy, R. V. Ulijn, J. Am. Chem. Soc. 2013, 135, 16789–16792;
- 9cM. Sawczyk, R. Klajn, J. Am. Chem. Soc. 2017, 139, 17973–17978.
- 10
- 10aA. Chatterjee, C. Mahato, D. Das, Angew. Chem. Int. Ed. 2021, 60, 202–207; Angew. Chem. 2021, 133, 204–209;
- 10bA. Chatterjee, S. P. Afrose, S. Ahmed, A. Venugopal, D. Das, Chem. Commun. 2020, 56, 7869–7872;
- 10cS. Pal, S. Goswami, D. Das, Chem. Commun. 2021, 57, 7597–7609;
- 10dQ. Wang, Z. Yang, X. Zhang, X. Xiao, C. K. Chang, B. Xu, Angew. Chem. Int. Ed. 2007, 46, 4285–4289; Angew. Chem. 2007, 119, 4363–4367.
- 11
- 11aH. Y. Lee, S. R. Nam, J.-I. Hong, J. Am. Chem. Soc. 2007, 129, 1040–1041;
- 11bM. M. Ulyashova, M. Y. Rubtsova, A. M. Egorov, Russ. Chem. Bull. 2011, 60, 656–661;
- 11cK. Deng, Y. Zhang, X. D. Tong, Analyst 2018, 143, 1454–1461.
- 12
- 12aC. Zhang, R. Shafi, A. Lampel, D. MacPherson, C. G. Pappas, V. Narang, T. Wang, C. Maldarelli, R. V. Ulijn, Angew. Chem. Int. Ed. 2017, 56, 14511–14515; Angew. Chem. 2017, 129, 14703–14707;
- 12bG. Wei, Z. Su, N. P. Reynolds, P. Arosio, I. W. Hamley, E. Gazit, R. Mezzenga, Chem. Soc. Rev. 2017, 46, 4661–4708;
- 12cP. Pengo, S. Polizzi, L. Pasquato, P. Scrimin, J. Am. Chem. Soc. 2005, 127, 1616–1617;
- 12dQ. Wang, L. Li, B. Xu, Chem. Eur. J. 2009, 15, 3168–3172.
- 13
- 13aX. Zhao, H. Palacci, V. Yadav, M. M. Spiering, M. K. Gilson, P. J. Butler, H. Hess, S. J. Benkovic, A. Sen, Nat. Chem. 2018, 10, 311–317;
- 13bT. O. Omosun, M.-C. Hsieh, W. S. Childers, D. Das, A. K. Mehta, N. R. Anthony, T. Pan, M. A. Grover, K. M. Berland, D. G. Lynn, Nat. Chem. 2017, 9, 805–809;
- 13cN. Singh, M. P. Conte, R. V. Ulijn, J. F. Miravet, B. Escuder, Chem. Commun. 2015, 51, 13213–13216.
- 14
- 14aY. Bai, A. Chotera, O. Taran, C. Liang, G. Ashkenasy, D. G. Lynn, Chem. Soc. Rev. 2018, 47, 5444–5456;
- 14bJ. C. Xavier, W. Hordijk, S. Kauffman, M. Steel, W. F. Martin, Proc. R. Soc. London Ser. B 2020, 287, 20192377;
- 14cD. Deamer, A. L. Weber, Cold Spring Harbor Perspect. Biol. 2010, 2, a004929.
- 15
- 15aA. Pross, J. Phys. Org. Chem. 2008, 21, 724–730;
- 15bK. Das, L. Gabrielli, L. J. Prins, Angew. Chem. Int. Ed. 2021, 60, 20120–20143; Angew. Chem. 2021, 133, 20280–20303;
- 15cB. G. P. van Ravensteijn, I. K. Voets, W. K. Kegel, R. Eelkema, Langmuir 2020, 36, 10639–10656;
- 15dB. Sarkhel, A. Chatterjee, D. Das, J. Am. Chem. Soc. 2020, 142, 4098–4103.