Highly Ethylene-Selective Electrocatalytic CO2 Reduction Enabled by Isolated Cu−S Motifs in Metal–Organic Framework Based Precatalysts
Chun Fang Wen
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorMin Zhou
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Peng Fei Liu
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYuanwei Liu
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorXuefeng Wu
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorDr. Fangxin Mao
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Sheng Dai
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorBeibei Xu
Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorProf. Xue Lu Wang
Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorProf. Zheng Jiang
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorProf. P. Hu
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG UK
Search for more papers by this authorProf. Shuang Yang
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Hai Feng Wang
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Hua Gui Yang
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorChun Fang Wen
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorMin Zhou
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Peng Fei Liu
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYuanwei Liu
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorXuefeng Wu
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorDr. Fangxin Mao
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Sheng Dai
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorBeibei Xu
Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorProf. Xue Lu Wang
Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorProf. Zheng Jiang
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorProf. P. Hu
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG UK
Search for more papers by this authorProf. Shuang Yang
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Hai Feng Wang
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Hua Gui Yang
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorGraphical Abstract
A S-HKUST-1 precatalyst with stable isolated Cu−S motifs was prepared by the strategy of local sulfur doping. The precatalyst can be in situ reconstructed to obtain a Cu(S) matrix with active biphasic copper/copper sulfide interfaces, which delivers a current density of 400 mA cm−2 with Faradaic efficiency of ethylene to 57.2 % in the flow cell.
Abstract
Copper-based materials are efficient electrocatalysts for the conversion of CO2 to C2+ products, and most these materials are reconstructed in situ to regenerate active species. It is a challenge to precisely design precatalysts to obtain active sites for the CO2 reduction reaction (CO2RR). Herein, we develop a strategy based on local sulfur doping of a Cu-based metal–organic framework precatalyst, in which the stable Cu−S motif is dispersed in the framework of HKUST-1 (S-HKUST-1). The precatalyst exhibits a high ethylene selectivity in an H-type cell with a maximum faradaic efficiency (FE) of 60.0 %, and delivers a current density of 400 mA cm−2 with an ethylene FE up to 57.2 % in a flow cell. Operando X-ray absorption results demonstrate that Cuδ+ species stabilized by the Cu−S motif exist in S-HKUST-1 during CO2RR. Density functional theory calculations indicate the partially oxidized Cuδ+ at the Cu/CuxSy interface is favorable for coupling of the *CO intermediate due to the modest distance between coupling sites and optimized adsorption energy.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202111700-sup-0001-misc_information.pdf3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709–1742;
- 1bC. Chen, J. F. Khosrowabadi Kotyk, S. W. Sheehan, Chem 2018, 4, 2571–2586;
- 1cZ. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 2
- 2aH. Mistry, A. S. Varela, S. Kühl, P. Strasser, B. R. Cuenya, Nat. Rev. Mater. 2016, 1, 16009;
- 2bO. S. Bushuyev, P. De Luna, C. T. Dinh, L. Tao, G. Saur, J. van de Lagemaat, S. O. Kelley, E. H. Sargent, Joule 2018, 2, 825–832;
- 2cW. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang, Chem. Soc. Rev. 2019, 48, 3193–3228;
- 2dA. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.-Z. Qiao, Chem 2018, 4, 1809–1831.
- 3M. G. Kibria, J. P. Edwards, C. M. Gabardo, C. T. Dinh, A. Seifitokaldani, D. Sinton, E. H. Sargent, Adv. Mater. 2019, 31, 1807166.
- 4
- 4aD. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal. 2019, 2, 198–210;
- 4bH. Li, T. Liu, P. Wei, L. Lin, D. Gao, G. Wang, X. Bao, Angew. Chem. Int. Ed. 2021, 60, 14329–14333; Angew. Chem. 2021, 133, 14450–14454;
- 4cZ. Z. Niu, F. Y. Gao, X. L. Zhang, P. P. Yang, R. Liu, L. P. Chi, Z. Z. Wu, S. Qin, X. Yu, M. R. Gao, J. Am. Chem. Soc. 2021, 143, 8011–8021.
- 5H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y. W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser, B. R. Cuenya, Nat. Commun. 2016, 7, 12123.
- 6W. Zhang, C. Huang, Q. Xiao, L. Yu, L. Shuai, P. An, J. Zhang, M. Qiu, Z. Ren, Y. Yu, J. Am. Chem. Soc. 2020, 142, 11417–11427.
- 7T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna, T. Burdyny, F. Che, F. Meng, Y. Min, R. Quintero-Bermudez, C. T. Dinh, Y. Pang, M. Zhong, B. Zhang, J. Li, P.-N. Chen, X.-L. Zheng, H. Liang, W.-N. Ge, B.-J. Ye, D. Sinton, S.-H. Yu, E. H. Sargent, Nat. Catal. 2018, 1, 421–428.
- 8C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 7231–7234.
- 9
- 9aF. S. Roberts, K. P. Kuhl, A. Nilsson, Angew. Chem. Int. Ed. 2015, 54, 5179–5182; Angew. Chem. 2015, 127, 5268–5271;
- 9bD. Gao, I. Zegkinoglou, N. J. Divins, F. Scholten, I. Sinev, P. Grosse, B. Roldan Cuenya, ACS Nano 2017, 11, 4825–4831.
- 10
- 10aZ.-Q. Liang, T. T. Zhuang, A. Seifitokaldani, J. Li, C. W. Huang, C. S. Tan, Y. Li, P. De Luna, C. T. Dinh, Y. Hu, Q. Xiao, P. L. Hsieh, Y. Wang, F. Li, R. Quintero-Bermudez, Y. Zhou, P. Chen, Y. Pang, S. C. Lo, L. J. Chen, H. Tan, Z. Xu, S. Zhao, D. Sinton, E. H. Sargent, Nat. Commun. 2018, 9, 3828;
- 10bY. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T. K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, E. H. Sargent, Nat. Chem. 2018, 10, 974–980;
- 10cT. Qin, Y. Qian, F. Zhang, B.-L. Lin, Chin. Chem. Lett. 2019, 30, 314–318.
- 11
- 11aS. Dang, Q.-L. Zhu, Q. Xu, Nat. Rev. Mater. 2018, 3, 17075;
- 11bL. Yang, X. Zeng, W. Wang, D. Cao, Adv. Funct. Mater. 2018, 28, 1704537;
- 11cW. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 8, 1837–1866;
- 11dC. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang, X. Bao, Energy Environ. Sci. 2018, 11, 1204–1210;
- 11eZ. Jiang, X. Xu, Y. Ma, H. S. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T. Peng, L. Zan, H. Deng, Nature 2020, 586, 549–554.
- 12
- 12aT. Shinagawa, G. O. Larrazábal, A. J. Martín, F. Krumeich, J. Pérez-Ramírez, ACS Catal. 2018, 8, 837–844;
- 12bK. R. Phillips, Y. Katayama, J. Hwang, Y. Shao-Horn, J. Phys. Chem. Lett. 2018, 9, 4407–4412.
- 13K. Cho, S.-H. Han, M. P. Suh, Angew. Chem. Int. Ed. 2016, 55, 15301–15305; Angew. Chem. 2016, 128, 15527–15531.
- 14Y. C. Tan, H. C. Zeng, Nat. Commun. 2018, 9, 4326.
- 15S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148–1150.
- 16D.-H. Nam, O. S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani, C.-T. Dinh, F. P. Garcia de Arquer, Y. Wang, Z. Liang, A. H. Proppe, C. S. Tan, P. Todorovic, O. Shekhah, C. M. Gabardo, J. W. Jo, J. Choi, M. J. Choi, S.-W. Baek, J. Kim, D. Sinton, S. O. Kelley, M. Eddaoudi, E. H. Sargent, J. Am. Chem. Soc. 2018, 140, 11378–11386.
- 17D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier, P. Marcus, M. Fontecave, V. Mougel, Nat. Mater. 2019, 18, 1222–1227.
- 18
- 18aC. Zhao, G. Luo, X. Liu, W. Zhang, Z. Li, Q. Xu, Q. Zhang, H. Wang, D. Li, F. Zhou, Y. Qu, X. Han, Z. Zhu, G. Wu, J. Wang, J. Zhu, T. Yao, Y. Li, H. J. M. Bouwmeester, Y. Wu, Adv. Mater. 2020, 32, 2002382;
- 18bC. G. Morales-Guio, E. R. Cave, S. A. Nitopi, J. T. Feaster, L. Wang, K. P. Kuhl, A. Jackson, N. C. Johnson, D. N. Abram, T. Hatsukade, C. Hahn, T. F. Jaramillo, Nat. Catal. 2018, 1, 764–771;
- 18cN. Martić, C. Reller, C. Macauley, M. Löffler, B. Schmid, D. Reinisch, E. Volkova, A. Maltenberger, A. Rucki, K. J. J. Mayrhofer, G. Schmid, Adv. Energy Mater. 2019, 9, 1901228;
- 18dJ. Kim, W. Choi, J. W. Park, C. Kim, M. Kim, H. Song, J. Am. Chem. Soc. 2019, 141, 6986–6994.
- 19S. Y. Lee, H. Jung, N. K. Kim, H. S. Oh, B. K. Min, Y. J. Hwang, J. Am. Chem. Soc. 2018, 140, 8681–8689.
- 20K. Yao, Y. Xia, J. Li, N. Wang, J. Han, C. Gao, M. Han, G. Shen, Y. Liu, A. Seifitokaldani, X. Sun, H. Liang, J. Mater. Chem. A 2020, 8, 11117–11123.
- 21C. Prestipino, L. Regli, J. G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P. L. Solari, K. O. Kongshaug, S. Bordiga, Chem. Mater. 2006, 18, 1337–1346.
- 22
- 22aC. Huang, J. Dong, W. Sun, Z. Xue, J. Ma, L. Zheng, C. Liu, X. Li, K. Zhou, X. Qiao, Q. Song, W. Ma, L. Zhang, Z. Lin, T. Wang, Nat. Commun. 2019, 10, 2779;
- 22bA. E. Baumann, G. E. Aversa, A. Roy, M. L. Falk, N. M. Bedford, V. S. Thoi, J. Mater. Chem. A 2018, 6, 4811–4821.
- 23
- 23aX. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, J. Am. Chem. Soc. 2017, 139, 14889–14892;
- 23bC. F. Wen, F. Mao, Y. Liu, X. Y. Zhang, H. Q. Fu, L. R. Zheng, P. F. Liu, H. G. Yang, ACS Catal. 2020, 10, 1086–1093.
- 24
- 24aL.-C. Weng, A. T. Bell, A. Z. Weber, Energy Environ. Sci. 2019, 12, 1950–1968;
- 24bJ. Gu, C.-S. Hsu, L. Bai, H. M. Chen, X. Hu, Science 2019, 364, 1091–1094.
- 25
- 25aQ. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu, B. Han, Angew. Chem. Int. Ed. 2020, 59, 8896–8901; Angew. Chem. 2020, 132, 8981–8986;
- 25bQ. Zhu, X. Sun, D. Yang, J. Ma, X. Kang, L. Zheng, J. Zhang, Z. Wu, B. Han, Nat. Commun. 2019, 10, 3851.
- 26
- 26aS.-C. Lin, C.-C. Chang, S.-Y. Chiu, H.-T. Pai, T.-Y. Liao, C.-S. Hsu, W.-H. Chiang, M.-K. Tsai, H. M. Chen, Nat. Commun. 2020, 11, 3525;
- 26bT. Möller, F. Scholten, T. N. Thanh, I. Sinev, J. Timoshenko, X. Wang, Z. Jovanov, M. Gliech, B. Roldan Cuenya, A. S. Varela, P. Strasser, Angew. Chem. Int. Ed. 2020, 59, 17974–17983; Angew. Chem. 2020, 132, 18130–18139;
- 26cB. Mei, S. Gu, X. Du, Z. Li, H. Cao, F. Song, Y. Huang, Z. Jiang, X-Ray Spectrom. 2020, 49, 251–259.
- 27Z. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X. F. Wang, Q. Ma, G. W. Brudvig, V. S. Batista, Y. Liang, Z. Feng, H. Wang, Nat. Commun. 2018, 9, 415.
- 28W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 2020, 3, 478–487.
- 29
- 29aJ. Gao, H. Zhang, X. Guo, J. Luo, S. M. Zakeeruddin, D. Ren, M. Gratzel, J. Am. Chem. Soc. 2019, 141, 18704–18714;
- 29bY. Song, J. R. C. Junqueira, N. Sikdar, D. Ohl, S. Dieckhofer, T. Quast, S. Seisel, J. Masa, C. Andronescu, W. Schuhmann, Angew. Chem. Int. Ed. 2021, 60, 9135–9141; Angew. Chem. 2021, 133, 9217–9224.
- 30
- 30aP. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Nat. Catal. 2018, 1, 103–110;
- 30bK. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin, M. T. M. Koper, Chem. Sci. 2011, 2, 1902–1909;
- 30cX. Nie, M. R. Esopi, M. J. Janik, A. Asthagiri, Angew. Chem. Int. Ed. 2013, 52, 2459–2462; Angew. Chem. 2013, 125, 2519–2522.
- 31
- 31aJ. H. Montoya, C. Shi, K. Chan, J. K. Nørskov, J. Phys. Chem. Lett. 2015, 6, 2032–2037;
- 31bK. Jiang, R. B. Sandberg, A. J. Akey, X. Liu, D. C. Bell, J. K. Nørskov, K. Chan, H. Wang, Nat. Catal. 2018, 1, 111–119;
- 31cJ. Hussain, H. Jónsson, E. Skúlason, ACS Catal. 2018, 8, 5240–5249.
- 32J. Wang, H. Y. Tan, Y. Zhu, H. Chu, H. M. Chen, Angew. Chem. Int. Ed. 2021, 60, 17254–17267; Angew. Chem. 2021, 133, 17394–17407.
- 33Y. Huang, Y. Deng, A. D. Handoko, G. K. L. Goh, B. SiangYeo, ChemSusChem 2018, 11, 320–326.
- 34H. Xiao, W. A. Goddard III, T. Cheng, Y. Liu, Proc. Natl. Acad. Sci. USA 2017, 114, 6685–6688.
- 35R. García-Muelas, F. Dattila, T. Shinagawa, A. J. Martin, J. Perez-Ramirez, N. Lopez, J. Phys. Chem. Lett. 2018, 9, 7153–7159.