Irradiation-Wavelength Directing Circularly Polarized Luminescence in Self-Organized Helical Superstructures Enabled by Hydrogen-Bonded Chiral Fluorescent Molecular Switches
Yanrong He
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Shu Zhang
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Hari Krishna Bisoyi
Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio, 44242 USA
Search for more papers by this authorJinghui Qiao
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorHong Chen
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorJingJing Gao
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Jinbao Guo
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Quan Li
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189 China
Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio, 44242 USA
Search for more papers by this authorYanrong He
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Shu Zhang
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Hari Krishna Bisoyi
Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio, 44242 USA
Search for more papers by this authorJinghui Qiao
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorHong Chen
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorJingJing Gao
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Jinbao Guo
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Quan Li
Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189 China
Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio, 44242 USA
Search for more papers by this authorGraphical Abstract
Phototuning the turning-off and the polarization inversion of circularly polarized luminescence signals is obtained in the corresponding photostationary state of the same helical cholesteric superstructure constructed from the light-driven hydrogen bonded chiral fluorescent molecular switch, which derives from the different conversion ratio of Z/E photoisomerization of the switch upon different light irradiations.
Abstract
Two light-driven chiral fluorescent molecular switches, (R,S,R)-switch 1 and (R,S,R)-switch 2, are prepared by means of hydrogen-bonded (H-bonded) assembly of a photoresponsive (S) chiral fluorescent molecule, respectively with a cyano substitution at different positions as an H-bond acceptor and an opposite (R) chiral molecule as an H-bond donor. The resulting two switches exhibit tunable and reversible Z/E photoisomerization irradiated with 450 nm blue and 365 nm UV light. When doped into an achiral liquid crystal, both switches are found to be able to form a CPL tunable luminescent helical superstructure. In contrast to the tunable CPL characteristics of the system incorporating switch 2, exposure of the system incorporating switch 1 to 365 nm and 450 nm radiation can lead to controllable different photostationary CPL behavior, including switching-off and polarization inversion. In addition, optical information coding is demonstrated using the system containing switch 1.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202111344-sup-0001-misc_information.pdf4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Sang, J. Han, T. Zhao, P. Duan, M. Liu, Adv. Mater. 2020, 32, 1900110.
- 2H. K. Bisoyi, Q. Li, Acc. Chem. Res. 2014, 47, 3184.
- 3Q. Ye, F. Zheng, E. Zhang, H. K. Bisoyi, S. Zheng, D. Zhu, Q. Lu, H. Zhang, Q. Li, Chem. Sci. 2020, 11, 9989.
- 4J. Lunkley, D. Shirotani, K. Yamanari, S. Kaizaki, G. Muller, J. Am. Chem. Soc. 2008, 130, 13814.
- 5
- 5aY. Sawada, S. Furumi, A. Takai, M. Takeuchi, K. Noguchi, K. Tanaka, J. Am. Chem. Soc. 2012, 134, 4080;
- 5bF. Wang, W. Ji, P. Yang, C. Feng, ACS Nano 2019, 13, 7281;
- 5cM. Khorloo, X. Yu, Y. Cheng, H. Zhang, S. Yu, J. Lam, M. Zhu, B. Tang, ACS Nano 2021, 15, 1397.
- 6
- 6aF. Meng, Y. Li, W. Zhang, S. Li, Y. Quan, Y. Cheng, Polym. Chem. 2017, 8, 1555;
- 6bB. Zhao, K. Pan, J. Deng, Macromolecules 2019, 52, 376.
- 7T. Ikai, Y. Kojima, K. Shinohara, K. Maeda, S. Kanoh, Polymer 2017, 117, 220.
- 8
- 8aY. Zhang, D. Yang, J. Han, J. Zhou, Q. Jin, M. Liu, P. Duan, Langmuir 2018, 34, 5821;
- 8bH. Zheng, B. Ju, X. Wang, W. Wang, M. Li, Z. Tang, S. Zhang, Y. Xu, Adv. Opt. Mater. 2018, 6, 1801246;
- 8cW. Li, M. Xu, C. Ma, Y. Liu, J. Zhou, Z. Chen, Y. Wang, H. Yu, J. Li, S. Liu, ACS Appl. Mater. Interfaces 2019, 11, 23512;
- 8dS. Huo, P. Duan, T. Jiao, Q. Peng, M. Liu, Angew. Chem. Int. Ed. 2017, 56, 12174; Angew. Chem. 2017, 129, 12342.
- 9
- 9aH. Wang, H. K. Bisoyi, A. M. Urbas, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2019, 141, 8078;
- 9bL. Wang, H. Dong, Y. Li, R. Liu, Y. Wang, H. K. Bisoyi, L. Sun, C. Yan, Q. Li, Adv. Mater. 2015, 27, 2065;
- 9cH. K. Bisoyi, Q. Li, Chem. Rev. 2016, 116, 15089;
- 9dY. Li, M. Wang, T. J. White, T. J. Bunning, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 8925; Angew. Chem. 2013, 125, 9093;
- 9eX. Li, W. Hu, Y. Wang, Y. Quan, Y. Cheng, Chem. Commun. 2019, 55, 5179.
- 10
- 10aY. Huang, H. K. Bisoyi, S. Huang, M. Wang, X. Chen, Z. Liu, H. Yang, Q. Li, Angew. Chem. Int. Ed. 2021, 60, 11247; Angew. Chem. 2021, 133, 11347;
- 10bY. Shan, L. You, H. K. Bisoyi, Y. Yang, Y. Ge, K. Che, S. Li, L. Chen, Q. Li, Adv. Opt. Mater. 2020, 8, 2000692;
- 10cJ. Fan, Y. Li, H. K. Bisoyi, R. Zola, D. Yang, T. J. Bunning, D. A. Weitz, Q. Li, Angew. Chem. Int. Ed. 2015, 54, 2160; Angew. Chem. 2015, 127, 2188;
- 10dT. J. White, R. Bricker, L. Natarajan, V. Tondiglia, C. Bailey, L. Green, Q. Li, T. J. Bunning, Opt. Commun. 2010, 283, 3434;
- 10eR. Zola, H. K. Bisoyi, H. Wang, A. M. Urbas, T. J. Bunning, Q. Li, Adv. Mater. 2019, 31, 1806172;
- 10fZ. Zheng, Y. Lu, Q. Li, Adv. Mater. 2020, 32, 1905318;
- 10gY. Wang, Q. Li, Adv. Mater. 2012, 24, 1926;
- 10hY. Li, C. Xue, M. Wang, A. Urbas, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 13703; Angew. Chem. 2013, 125, 13948;
- 10iH. Wang, H. K. Bisoyi, B. Li, M. E. McConney, T. J. Bunning, Q. Li, Angew. Chem. Int. Ed. 2020, 59, 2684; Angew. Chem. 2020, 132, 2706;
- 10jP. Chen, L. Ma, W. Hu, Z. Shen, H. K. Bisoyi, S. Wu, S. Ge, Q. Li, Y. Lu, Nat. Commun. 2019, 10, 2518.
- 11
- 11aH. Yu, B. Zhao, J. Guo, K. Pan, J. Deng, J. Mater. Chem. C 2020, 8, 1459;
- 11bL. Wang, Q. Li, Chem. Soc. Rev. 2018, 47, 1044.
- 12
- 12aY. Chen, P. Lu, Z. Li, Y. Yuan, Q. Ye, H. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 56604;
- 12bX. Yang, M. Zhou, Y. Wang, P. Duan, Adv. Mater. 2020, 32, 2000820.
- 13J. Yan, F. Ota, B. Jose, K. Akagi, Adv. Funct. Mater. 2017, 27, 1604529.
- 14
- 14aJ. Li, H. K. Bisoyi, S. Lin, J. Guo, Q. Li, Angew. Chem. Int. Ed. 2019, 58, 16052; Angew. Chem. 2019, 131, 16198;
- 14bQ. Li, Y. Li, J. Ma, D. Yang, T. J. White, T. J. Bunning, Adv. Mater. 2011, 23, 5069;
- 14cY. He, J. Li, J. Li, C. Zhu, J. Guo, ACS Appl. Polym. Mater. 2019, 1, 746;
- 14dZ. Zhang, J. Li, W. Wei, J. Wei, J. Guo, Chin. J. Polym. Sci. 2018, 36, 776;
- 14eJ. Li, M. Tian, H. Xu, X. Ding, J. Guo, Part. Part. Syst. Charact. 2019, 36, 1900346.
- 15
- 15aJ. Tian, Y. He, J. Li, J. Wei, G. Li, J. Guo, Adv. Opt. Mater. 2018, 6, 1701337;
- 15bJ. Li, Z. Zhang, J. Tian, G. Li, J. Wei, J. Guo, Adv. Opt. Mater. 2017, 5, 1700014;
- 15cJ. Li, H. K. Bisoyi, J. Tian, J. Guo, Q. Li, Adv. Mater. 2019, 31, 1807751.
- 16
- 16aJ. Qiao, S. Lin, J. Li, J. Tian, J. Guo, Chem. Commun. 2019, 55, 14590.
- 17
- 17aS. Chen, S. Jiang, J. Qiu, H. Guo, F. Yang, Chem. Commun. 2020, 56, 7745;
- 17bA. Jamadar, A. Das, Polym. Chem. 2020, 11, 385.
- 18
- 18aO. Jin, D. Fu, J. Wei, H. Yang, J. Guo, RSC Adv. 2014, 4, 28597;
- 18bO. Jin, D. Fu, Y. Ge, J. Wei, J. Guo, New J. Chem. 2015, 39, 254;
- 18cD. Fu, J. Li, J. Wei, J. Guo, Soft Matter 2015, 11, 3034.
- 19M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, S. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. Kudin, V. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. Millam, M. Klene, J. Knox, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. Martin, K. Morokuma, V. Zakrzewski, G. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. Daniels, O. Farkas, J. Foresman, J. Ortiz, J. Cioslowski, D. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT 2013.
- 20
- 20aT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580;
- 20bT. Lu, F. Chen, Acta Chim. Sin. 2011, 69, 2393.
- 21
- 21aS. Lin, H. Sun, J. Qiao, X. Ding, J. Guo, Adv. Opt. Mater. 2020, 8, 2000107;
- 21bS. Lin, J. Li, H. K. Bisoyi, A. Juan, J. Guo, Q. Li, ChemPhotoChem 2019, 3, 480;
- 21cS. Lin, K. Cuevas, X. Zhang, J. Guo, Q. Li, Adv. Funct. Mater. 2020, 31, 2007957;
- 21dA. Juan, S. Lin, Y. He, Q. Fan, J. Guo, Soft Matter 2021, 17, 1404;
- 21eA. Juan, H. Sun, J. Qiao, J. Guo, Chem. Commun. 2020, 56, 13649.
- 22
- 22aW. Zhao, Z. Liu, J. Yu, X. Lu, J. Lam, J. Sun, Z. He, H. Ma, B. Tang, Adv. Mater. 2021, 33, 2006844;
- 22bH. Zhang, L. Xu, F. Liu, C. Huang, J. Wei, Nanotechnology 2019, 30, 505706;
- 22cH. Zhang, C. Huang, N. Li, J. Wei, J. Colloid Interface Sci. 2021, 592, 249.