Crystal Structure Classification of Copper-Based Sulfides as a Tool for the Design of Inorganic Functional Materials
Corresponding Author
Dr. Pierric Lemoine
ISCR, Univ. Rennes, CNRS, F-35000 Rennes, France
These authors contributed equally to this work.
Search for more papers by this authorDr. Gabin Guélou
CRISMAT, ENSICAEN, UNICAEN, Normandie Univ, CNRS, 14000 Caen, France
These authors contributed equally to this work.
Search for more papers by this authorProf. Bernard Raveau
CRISMAT, ENSICAEN, UNICAEN, Normandie Univ, CNRS, 14000 Caen, France
Search for more papers by this authorCorresponding Author
Dr. Emmanuel Guilmeau
CRISMAT, ENSICAEN, UNICAEN, Normandie Univ, CNRS, 14000 Caen, France
Search for more papers by this authorCorresponding Author
Dr. Pierric Lemoine
ISCR, Univ. Rennes, CNRS, F-35000 Rennes, France
These authors contributed equally to this work.
Search for more papers by this authorDr. Gabin Guélou
CRISMAT, ENSICAEN, UNICAEN, Normandie Univ, CNRS, 14000 Caen, France
These authors contributed equally to this work.
Search for more papers by this authorProf. Bernard Raveau
CRISMAT, ENSICAEN, UNICAEN, Normandie Univ, CNRS, 14000 Caen, France
Search for more papers by this authorCorresponding Author
Dr. Emmanuel Guilmeau
CRISMAT, ENSICAEN, UNICAEN, Normandie Univ, CNRS, 14000 Caen, France
Search for more papers by this authorGraphical Abstract
A classification of copper sulfides based on crystallographic features has been proposed from investigation of the structure–property relationships reported on their phases in dozens of publications from the fields of crystallography and materials for energy conversion. This classification reveals systematic trends that can be explained and exploited for the design and engineering of new environmentally friendly materials.
Abstract
Research focusing on the interplay between structural features and transport properties of inorganic materials is of paramount importance for the identification, comprehension, and optimisation of functional materials. In this respect, Earth-abundant copper sulfides have been receiving considerable attention from scientists as the urgency remains to discover and improve the efficiency of sustainable materials for energy applications. This proposed classification of copper sulfides, associated with p- and/or d-block elements, is based on their crystallographic features and an analysis of their transport properties. It provides guidelines to help estimate some properties of new materials (type of main charge carriers, thermal conductivity, transport mechanisms, etc.) from consideration of only their chemical composition and crystal structure. The classification relies primarily on recent studies in the fields of thermoelectricity and photovoltaics as well as on crystal-structure investigations.
Conflict of interest
The authors declare no conflict of interest.
References
- 1S. R. Rintoul, S. L. Chown, R. M. DeConto, M. H. England, H. A. Fricker, V. Masson-Delmotte, T. R. Naish, M. J. Siegert, J. C. Xavier, Nature 2018, 558, 233–241.
- 2D. M. Rowe, Renewable Energy 1999, 16, 1251–1256.
- 3X.-L. Shi, J. Zou, Z.-G. Chen, Chem. Rev. 2020, 120, 7399–7515.
- 4Y.-X. Wang, W.-H. Lai, Y.-X. Wang, S.-L. Chou, X. Ai, H. Yang, Y. Cao, Angew. Chem. Int. Ed. 2019, 58, 18324–18337; Angew. Chem. 2019, 131, 18490–18504.
- 5A. V. Powell, J. Appl. Phys. 2019, 126, 100901.
- 6R. Freer, A. V. Powell, J. Mater. Chem. C 2020, 8, 441–463.
- 7G. Guélou, P. Lemoine, B. Raveau, E. Guilmeau, J. Mater. Chem. C 2021, 9, 773–795.
- 8K. Suekuni, T. Takabatake, APL Mater. 2016, 4, 104503.
- 9A. P. Gonçalves, E. B. Lopes, Semiconductors 2019, 53, 1817–1824.
- 10A. V. Powell, in Thermoelectric Energy Conversion (1st edition) (Ed.: R. Funahashi), Woodhead Publishing, 2021, pp. 183–196.
10.1016/B978-0-12-818535-3.00031-1 Google Scholar
- 11K. Suekuni, M. Ohta, T. Takabatake, E. Guilmeau, in Thermoelectric Energy Conversion (1st edition) (Ed.: R. Funahashi), Woodhead Publishing, 2021, pp. 197–216.
10.1016/B978-0-12-818535-3.00003-7 Google Scholar
- 12S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Adv. Mater. 2013, 25, 1522–1539.
- 13P. Kush, S. Deka, ChemNanoMat 2019, 5, 373–402.
- 14A. C. Lokhande, P. T. Babar, V. C. Karade, M. G. Gang, V. C. Lokhande, C. D. Lokhande, J. H. Kim, J. Mater. Chem. A 2019, 7, 17118–17182.
- 15A. Le Donne, V. Trifiletti, S. Binetti, Front. Chem. 2019, 7, 297.
- 16O. C. Olatunde, D. C. Onwudiwe, Mater. Sci. Semicond. Process. 2021, 125, 105627.
- 17A. C. Lokhande, R. B. V. Chalapathy, M. He, E. Jo, M. Gang, S. A. Pawar, C. D. Lokhande, J. H. Kim, Sol. Energy Mater. Sol. Cells 2016, 153, 84–107.
- 18Μ. E. Fleet, Z. Kristallogr. Cryst. Mater. 1970, 132, 276–287.
- 19Y. Goto, F. Naito, R. Sato, K. Yoshiyasu, T. Itoh, Y. Kamihara, M. Matoba, Inorg. Chem. 2013, 52, 9861–9866.
- 20P. Bonazzi, L. Bindi, G. P. Bernardini, S. Menchetti, Can. Mineral. 2003, 41, 639–647.
- 21S. R. Hall, J. M. Stewart, Acta Crystallogr. Sect. B 1973, 29, 579–585.
- 22M. Wintenberger, Mater. Res. Bull. 1979, 14, 1195–1202.
- 23S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 1973, 59, 5415–5422.
- 24J. Garin, E. Parthé, Acta Crystallogr. Sect. B 1972, 28, 3672–3674.
- 25L. M. de Chalbaud, G. D. de Delgado, J. M. Delgado, A. E. Mora, V. Sagredo, Mater. Res. Bull. 1997, 32, 1371–1376.
- 26M. Onoda, X. Chen, A. Sato, H. Wada, Mater. Res. Bull. 2000, 35, 1563–1570.
- 27V. Pavan Kumar, P. Lemoine, V. Carnevali, G. Guélou, O. I. Lebedev, P. Boullay, B. Raveau, R. Al Rahal Al Orabi, M. Fornari, C. Prestipino, et al., J. Mater. Chem. A 2021, 9, 10812.
- 28A. Pfitzner, S. Reiser, Z. Kristallogr. Cryst. Mater. 2002, 217, 51.
- 29L. Pauling, S. Weinbaum, Z. Kristallogr. Cryst. Mater. 1934, 88, 48.
- 30R. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.
- 31K. Chen, C. Di Paola, B. Du, R. Zhang, S. Laricchia, N. Bonini, C. Weber, I. Abrahams, H. Yan, M. Reece, J. Mater. Chem. C 2018, 6, 8546–8552.
- 32L. Pauling, R. Hultgren, Z. Kristallogr. 1933, 84, 204–212.
- 33J. T. Szymanski, Can. Mineral. 1976, 14, 529–535.
- 34H. Putz, W. H. Paar, D. Topa, E. Makovicky, A. C. Roberts, Can. Mineral. 2006, 44, 1481–1497.
- 35L. Bindi, H. Putz, W. H. Paar, C. J. Stanley, Mineral. Mag. 2017, 81, 1151–1159.
- 36Y. Kudoh, Y. Takeuchi, Z. Kristallogr. 1976, 144, 145–160.
- 37R. T. Tettenhorst, C. E. Corbato, Am. Mineral. 1984, 69, 943–947.
- 38S. R. Hall, E. J. Gabe, Am. Mineral. 1972, 57, 368–380.
- 39L. R. Bernstein, D. G. Reichel, S. Merlino, Am. Mineral. 1989, 74, 1177–1181.
- 40P. G. Spry, S. Merlino, S. Wang, X. Zhang, P. R. Buseck, Am. Mineral. 1994, 79, 750–762.
- 41L. Wenyuan, D. Cheng, G. Xiangping, L. Yu, Q. Xiaoping, C. Yuchuan, Mineral. Mag. 2014, 78, 1517–1525.
- 42Y. Kikuchi, Y. Bouyrie, M. Ohta, K. Suekuni, M. Aihara, T. Takabatake, J. Mater. Chem. A 2016, 4, 15207–15214.
- 43V. Pavan Kumar, A. R. Supka, P. Lemoine, O. I. Lebedev, B. Raveau, K. Suekuni, V. Nassif, R. Al Rahal Al Orabi, M. Fornari, E. Guilmeau, Adv. Energy Mater. 2019, 9, 1803249.
- 44T. Hagiwara, K. Suekuni, P. Lemoine, A. R. Supka, R. Chetty, E. Guilmeau, B. Raveau, M. Fornari, M. Ohta, R. Al Rahal Al Orabi, et al., Chem. Mater. 2021, 33, 3449–3456.
- 45V. Pavan Kumar, L. Paradis-Fortin, P. Lemoine, G. Le Caër, B. Malaman, P. Boullay, B. Raveau, G. Guélou, E. Guilmeau, ACS Appl. Energy Mater. 2019, 2, 7679–7689.
- 46M. Kars, A. Rebbah, H. Rebbah, Acta Crystallogr. Sect. E 2005, 61, i180–i181.
- 47G. E. Delgado, J. E. Contreras, A. J. Mora, S. Duran, M. Munoz, P. Grima-Gallardo, Acta Phys. Pol. A 2011, 120, 468–472.
- 48K. O. Klepp, D. Gurtner, J. Alloys Compd. 1996, 243, 19–22.
- 49E. A. Pruss, B. S. Snyder, A. M. Stacy, Angew. Chem. Int. Ed. Engl. 1993, 32, 256–257; Angew. Chem. 1993, 105, 279–281.
- 50C. J. Crossland, J. S. O. Evans, Chem. Commun. 2003, 2292–2293.
- 51S. R. Hall, J. F. Rowland, Acta Crystallogr. Sect. B 1973, 29, 2365–2372.
- 52J. F. Rowland, S. R. Hall, Acta Crystallogr. Sect. B 1975, 31, 2105–2112.
- 53N. Morimoto, Acta Crystallogr. 1964, 17, 351–360.
- 54K. Yamamoto, S. Kashida, J. Solid State Chem. 1991, 93, 202–211.
- 55D. M. Trots, A. Senyshyn, D. A. Mikhailova, M. Knapp, C. Baehtz, M. Hoelzel, H. Fuess, J. Phys. Condens. Matter 2007, 19, 136204.
- 56Y. Kanazawa, K. Koto, N. Morimoto, Can. Mineral. 1978, 16, 397–404.
- 57K. Koto, N. Morimoto, Acta Crystallogr. Sect. B 1975, 31, 2268–2273.
- 58N. Le Nagard, G. Collin, O. Gorochov, Mater. Res. Bull. 1979, 14, 1411–1417.
- 59A. Choudhury, S. Mohapatra, H. Yaghoobnejad Asl, S. H. Lee, Y. S. Hor, J. E. Medvedeva, D. L. McClane, G. E. Hilmas, M. A. McGuire, A. F. May, et al., J. Solid State Chem. 2017, 253, 192–201.
- 60B. J. Wuensch, Z. Kristallogr. 1964, 119, 437–453.
- 61W. Lai, Y. Wang, D. T. Morelli, X. Lu, Adv. Funct. Mater. 2015, 25, 3648–3657.
- 62A. Suzumura, N. Nagasako, Y. Kinoshita, M. Watanabe, T. Kita, R. Asahi, Mater. Trans. 2015, 56, 858–863.
- 63S. O. Long, A. V. Powell, S. Hull, F. Orlandi, C. C. Tang, A. R. Supka, M. Fornari, P. Vaqueiro, Adv. Funct. Mater. 2020, 30, 1909409.
- 64P. Vaqueiro, G. Guélou, A. Kaltzoglou, R. I. R. I. Smith, T. Barbier, E. Guilmeau, A. V. Powell, Chem. Mater. 2017, 29, 4080–4090.
- 65H. Xie, X. Su, X. Zhang, S. Hao, T. P. Bailey, C. C. Stoumpos, A. P. Douvalis, X. Hu, C. Wolverton, V. P. Dravid, et al., J. Am. Chem. Soc. 2019, 141, 10905–10914.
- 66P. Barahona, A. Galdámez, F. López-Vergara, V. Manríquez, O. Peña, J. Solid State Chem. 2014, 212, 114–120.
- 67X. Chen, H. Wada, A. Sato, M. Mieno, J. Solid State Chem. 1998, 139, 144–151.
- 68C. Bourgès, P. Lemoine, O. I. Lebedev, R. Daou, V. Hardy, B. Malaman, E. Guilmeau, Acta Mater. 2015, 97, 180–190.
- 69T. Barbier, P. Lemoine, S. Gascoin, O. I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A. V. Powell, R. I. Smith, E. Guilmeau, J. Alloys Compd. 2015, 634, 253–262.
- 70G. Guélou, A. V. Powell, P. Vaqueiro, J. Mater. Chem. C 2015, 3, 10624–10629.
- 71K. Hashikuni, K. Suekuni, H. Usui, M. Ohta, K. Kuroki, T. Takabatake, Appl. Phys. Lett. 2016, 109, 182110.
- 72H. Xie, X. Su, G. Zheng, Y. Yan, W. Liu, H. Tang, M. G. Kanatzidis, C. Uher, X. Tang, J. Phys. Chem. C 2016, 120, 27895–27902.
- 73R. Zhang, K. Chen, B. Du, M. J. Reece, J. Mater. Chem. A 2017, 5, 5013–5019.
- 74V. Pavan Kumar, T. Barbier, V. Caignaert, B. Raveau, R. Daou, B. Malaman, G. Le Caër, P. Lemoine, E. Guilmeau, J. Phys. Chem. C 2017, 121, 16454–16461.
- 75Y. Yang, P. Ying, J. Wang, X. Liu, Z. Du, Y. Chao, J. Cui, J. Mater. Chem. A 2017, 5, 18808–18815.
- 76T. Barbier, D. Berthebaud, R. Frésard, O. I. Lebedev, E. Guilmeau, V. Eyert, A. Maignan, Inorg. Chem. Front. 2017, 4, 424–432.
- 77V. Pavan Kumar, L. Paradis-Fortin, P. Lemoine, V. Caignaert, B. Raveau, B. Malaman, G. Le Caër, S. Cordier, E. Guilmeau, Inorg. Chem. 2017, 56, 13376–13381.
- 78C. Bourgès, Y. Bouyrie, A. R. Supka, R. Al Rahal Al Orabi, P. Lemoine, O. I. Lebedev, M. Ohta, K. Suekuni, V. Nassif, V. Hardy, et al., J. Am. Chem. Soc. 2018, 140, 2186–2195.
- 79B. Du, R. Zhang, M. Liu, K. Chen, H. Zhang, M. J. Reece, J. Mater. Chem. C 2019, 7, 394–404.
- 80K. Suekuni, Y. Shimizu, E. Nishibori, H. Kasai, H. Saito, D. Yoshimoto, K. Hashikuni, Y. Bouyrie, R. Chetty, M. Ohta, et al., J. Mater. Chem. A 2019, 7, 228–235.
- 81Q. Jiang, H. Yan, Y. Lin, Y. Shen, J. Yang, M. J. Reece, J. Mater. Chem. A 2020, 8, 10909–10916.
- 82T. Deng, T. Xing, M. K. Brod, Y. Sheng, P. Qiu, I. Veremchuk, Q. Song, T.-R. Wei, J. Yang, G. J. Snyder, et al., Energy Environ. Sci. 2020, 13, 3041–3053.
- 83T. Tanimoto, K. Suekuni, T. Tanishita, H. Usui, T. Tadano, T. Kamei, H. Saito, H. Nishiate, C. H. Lee, K. Kuroki, et al., Adv. Funct. Mater. 2020, 30, 2000973.
- 84C. Bourgès, R. Al Rahal Al Orabi, Y. Miyazaki, J. Alloys Compd. 2020, 826, 154240.
- 85M. L. Liu, F. Q. Huang, L. D. Chen, I. W. Chen, Appl. Phys. Lett. 2009, 94, 202103.
- 86Y.-X. Chen, B.-P. Zhang, Z.-H. Ge, P.-P. Shang, J. Solid State Chem. 2012, 186, 109–115.
- 87X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, C. Uher, Adv. Energy Mater. 2013, 3, 342–348.
- 88Y. Shen, C. Li, R. Huang, R. Tian, Y. Ye, L. Pan, K. Koumoto, R. Zhang, C. Wan, Y. Wang, Sci. Rep. 2016, 6, 32501.
- 89M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A. W. Y. Ho-Baillie, Prog. Photovoltaics Res. Appl. 2020, 28, 3–15.
- 90H. Hiroi, Y. Iwata, S. Adachi, H. Sugimoto, A. Yamada, IEEE J. Photovoltaics 2016, 6, 760–763.
- 91L. Xi, Y. B. Zhang, X. Y. Shi, J. Yang, X. Shi, L. D. Chen, W. Zhang, J. Yang, D. J. Singh, Phys. Rev. B 2012, 86, 155201.
- 92B. Raveau, J. Supercond. Nov. Magn. 2020, 33, 259–263.
- 93H. Zhao, X. Xu, C. Li, R. Tian, R. Zhang, R. Huang, Y. Lyu, D. Li, X. Hu, L. Pan, et al., J. Mater. Chem. A 2017, 5, 23267–23275.
- 94L. Zhao, C. Chen, L. Pan, X. Hu, C. Lu, Y. Wang, J. Appl. Phys. 2019, 125, 095107.
- 95W. Zhou, P. Dwivedi, C. Shijimaya, M. Ito, K. Higashimine, T. Nakada, M. Takahashi, D. Mott, M. Miyata, M. Ohta, et al., ACS Appl. Nano Mater. 2018, 1, 4819–4827.
- 96W. Zhou, C. Shijimaya, M. Takahashi, M. Miyata, D. Mott, M. Koyano, M. Ohta, T. Akatsuka, H. Ono, S. Maenosono, Appl. Phys. Lett. 2017, 111, 263105.
- 97V. Pavan Kumar, P. Lemoine, V. Carnevali, G. Guélou, O. I. Lebedev, B. Raveau, R. Al Rahal Al Orabi, M. Fornari, C. Candolfi, C. Prestipino, et al., Inorg. Chem. 2021,.
- 98H. Xie, X. Su, S. Hao, C. Zhang, Z. Zhang, W. Liu, Y. Yan, C. Wolverton, X. Tang, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 18900–18909.
- 99D. Zou, G. Nie, Y. Li, Y. Xu, J. Lin, H. Zheng, J. Li, RSC Adv. 2015, 5, 24908–24914.
- 100T. Tanishita, K. Suekuni, H. Nishiate, C.-H. Lee, M. Ohtaki, Phys. Chem. Chem. Phys. 2020, 22, 2081–2086.
- 101H. Hiroi, N. Sakai, T. Kato, H. Sugimoto, in 2013 IEEE 39th Photovolt. Spec. Conf., 2013, pp. 863–866.
- 102A. McEvoy, L. Castaner, T. Markvart, Solar Cells: Materials, Manufacture and Operation, Academic Press, 2012.
- 103V. Itthibenchapong, R. S. Kokenyesi, A. J. Ritenour, L. N. Zakharov, S. W. Boettcher, J. F. Wager, D. A. Keszler, J. Mater. Chem. C 2013, 1, 657–662.
- 104K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, M. Koyano, J. Appl. Phys. 2013, 113, 043712.
- 105T. He, N. Lin, Z. Du, Y. Chao, J. Cui, J. Mater. Chem. C 2017, 5, 4206–4213.
- 106E. M. Chen, S. S. Stoyko, J. A. Aitken, P. F. P. Poudeu, Inorg. Chem. Front. 2017, 4, 1493–1500.
- 107X. Qiu, P. Qiu, T. Deng, H. Huang, X. Du, X. Shi, L. Chen, Z. Anorg. Allg. Chem. 2020, 646, 1116–1121.
- 108Y. Goto, Y. Sakai, Y. Kamihara, M. Matoba, J. Phys. Soc. Jpn. 2015, 84, 044706.
- 109X. Lu, D. T. Morelli, Y. Xia, V. Ozolins, Chem. Mater. 2015, 27, 408–413.
- 110K. Suekuni, F. S. Kim, T. Takabatake, J. Appl. Phys. 2014, 116, 063706.
- 111K. Suekuni, F. S. Kim, H. Nishiate, M. Ohta, H. I. Tanaka, T. Takabatake, Appl. Phys. Lett. 2014, 105, 132107.
- 112I. Siloi, P. Gopal, S. Curtarolo, M. Buongiorno Nardelli, P. Vaqueiro, M. Fornari, ACS Appl. Energy Mater. 2019, 2, 8068–8078.
- 113G. Guélou, V. Pavan Kumar, A. Bourhim, P. Lemoine, B. Raveau, A. Supka, O. I. Lebedev, R. Al Rahal Al Orabi, M. Fornari, K. Suekuni, et al., ACS Appl. Energy Mater. 2020, 3, 4180–4185.
- 114G. Guélou, C. Couder, A. Bourhim, O. I. Lebedev, N. Daneu, F. Appert, J. Juraszek, P. Lemoine, L. Segreto, E. Guilmeau, Acta Mater. 2020, 195, 229–239.
- 115Y. Yu, M. Cagnoni, O. Cojocaru-Mirédin, M. Wuttig, Adv. Funct. Mater. 2020, 30, 1904862.
- 116M. Cagnoni, D. Führen, M. Wuttig, Adv. Mater. 2018, 30, 1801787.
- 117G. Tan, L. D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123–12149.
- 118D. Sarkar, S. Roychowdhury, R. Arora, T. Ghosh, A. Vasdev, B. Joseph, G. Sheet, U. V. Waghmare, K. Biswas, Angew. Chem. Int. Ed. 2021, 60, 10350–10358; Angew. Chem. 2021, 133, 10438–10446.
- 119V. Pavan Kumar, G. Guélou, P. Lemoine, B. Raveau, A. Supka, R. Al Rahal Al Orabi, M. Fornari, K. Suekuni, E. Guilmeau, Angew. Chem. Int. Ed. 2019, 58, 15455–15463; Angew. Chem. 2019, 131, 15601–15609.
- 120L. Paradis-Fortin, G. Guélou, V. Pavan Kumar, P. Lemoine, C. Prestipino, O. Merdrignac-Conanec, G. R. Durand, S. Cordier, O. I. Lebedev, E. Guilmeau, J. Alloys Compd. 2020, 831, 154767.
- 121A. B. Kehoe, D. O. Scanlon, G. W. Watson, J. Mater. Chem. C 2015, 3, 12236–12244.
- 122H. Arribart, B. Sapoval, O. Gorochov, N. LeNagard, Solid State Commun. 1978, 26, 435–439.
- 123A. Golub, N. Allali, D. Guyomard, M. Danot, Mater. Res. Bull. 1995, 30, 959–966.
- 124Z.-H. Ge, L.-D. Zhao, D. Wu, X. Liu, B.-P. Zhang, J.-F. Li, J. He, Mater. Today 2016, 19, 227–239.
- 125G. Dennler, R. Chmielowski, S. Jacob, F. Capet, P. Roussel, S. Zastrow, K. Nielsch, I. Opahle, G. K. H. H. Madsen, Adv. Energy Mater. 2014, 4, 1301581.
- 126P. Qiu, T. Zhang, Y. Qiu, X. Shi, L. Chen, Energy Environ. Sci. 2014, 7, 4000–4006.
- 127S. O. J. Long, A. V. Powell, P. Vaqueiro, S. Hull, Chem. Mater. 2018, 30, 456–464.
- 128P. Lemoine, C. Bourgès, T. Barbier, V. Nassif, S. Cordier, E. Guilmeau, J. Solid State Chem. 2017, 247, 83–89.
- 129K. Suekuni, K. Tsuruta, T. Ariga, M. Koyano, Appl. Phys. Express 2012, 5, 051201.
- 130K. Suekuni, C. H. Lee, H. I. Tanaka, E. Nishibori, A. Nakamura, H. Kasai, H. Mori, H. Usui, M. Ochi, T. Hasegawa, et al., Adv. Mater. 2018, 30, 1706230.
- 131J. Heo, R. Ravichandran, C. F. Reidy, J. Tate, J. F. Wager, D. A. Keszler, Adv. Energy Mater. 2015, 5, 1401506.
- 132M. Hasaka, T. Aki, T. Morimura, S.-I. Kondo, Energy Convers. Manage. 1997, 38, 855–859.
- 133M. T. Caldes, C. Guillot-Deudon, A. Thomere, M. Penicaud, E. Gautron, P. Boullay, M. Bujoli-Doeuff, N. Barreau, S. Jobic, A. Lafond, Inorg. Chem. 2020, 59, 4546–4553.
- 134T. Deng, T.-R. Wei, Q. Song, Q. Xu, D. Ren, P. Qiu, X. Shi, L. Chen, RSC Adv. 2019, 9, 7826–7832.
- 135J. P. F. Jemetio, P. Zhou, H. Kleinke, J. Alloys Compd. 2006, 417, 55–59.