Photocatalytic Conversion of Methane: Recent Advancements and Prospects
Qi Li
State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 P. R. China
Search for more papers by this authorYuxing Ouyang
State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 P. R. China
Search for more papers by this authorDr. Hongliang Li
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Liangbing Wang
State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jie Zeng
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorQi Li
State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 P. R. China
Search for more papers by this authorYuxing Ouyang
State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 P. R. China
Search for more papers by this authorDr. Hongliang Li
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Liangbing Wang
State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jie Zeng
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorGraphical Abstract
The conversion of methane driven by solar energy offers a promising approach to directly transform methane into valuable energy sources under mild conditions, but remains a great challenge. This Review highlights recent advances in the photocatalytic conversion of methane and gives insights into the design of effective semiconductor-based photocatalysts and classifies the photooxidations according to the oxidants in the reaction system.
Abstract
Abundant and affordable methane is not only a high-quality fossil fuel, it is also a raw material for the synthesis of value-added chemicals. Solar-energy-driven conversion of methane offers a promising approach to directly transform methane to valuable energy sources under mild conditions, but remains a great challenge at present. In this Review, recent advances in the photocatalytic conversion of methane are systematically summarized. Insights into the construction of effective semiconductor-based photocatalysts from the perspective of light-absorption units and active centers are highlighted and discussed in detail. The performance of various photocatalysts in the conversion of methane is presented, with the photooxidation classified according to the oxidant systems. Lastly, challenges and future perspectives in the photocatalytic oxidation of methane are described.
Conflict of interest
The authors declare no conflict of interest.
References
- 1J. Baltrusaitis, I. Jansen, J. D. Schuttlefield Christus, Catal. Sci. Technol. 2014, 4, 2397.
- 2R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, D. Romanini, Environ. Sci. Technol. 2018, 52, 10543–10551.
- 3E. McFarland, Science 2012, 338, 340–342.
- 4E. Ryckebosch, M. Drouillon, H. Vervaeren, Biomass Bioenergy 2011, 35, 1633–1645.
- 5E. V. Kondratenko, T. Peppel, D. Seeburg, V. A. Kondratenko, N. Kalevaru, A. Martin, S. Wohlrab, Catal. Sci. Technol. 2017, 7, 366–381.
- 6M. Pang (2020). “China's gas status report in 2020.” Chinapower.
- 7P. Gangadharan, K. C. Kanchi, H. H. Lou, Chem. Eng. Res. Des. 2012, 90, 1956–1968.
- 8P. Zhai, G. Sun, Q. Zhu, D. Ma, Nanotechnol. Rev. 2013, 2, 547–576.
- 9A. Caballero, P. J. Perez, Chem. Soc. Rev. 2013, 42, 8809.
- 10H. Song, X. Meng, Z.-j. Wang, H. Liu, J. Ye, Joule 2019, 3, 1606–1636.
- 11L. Zhonghua, Y. Zhiguo, L. Zhaosheng, Z. Zhigang, Solar RRL 2021, 2000596.
- 12L. Zhou, J. M. P. Martirez, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Nat. Energy 2020, 5, 61–70.
- 13S. Zhu, D. Wang, Adv. Energy Mater. 2017, 7, 1700841.
- 14S. Shoji, X. Peng, A. Yamaguchi, R. Watanabe, C. Fukuhara, Y. Cho, T. Yamamoto, S. Matsumura, M.-W. Yu, S. Ishii, T. Fujita, H. Abe, M. Miyauchi, Nat. Catal. 2020, 3, 148–153.
- 15X. Meng, X. Cui, N. P. Rajan, L. Yu, D. Deng, X. Bao, Chem 2019, 5, 2296–2325.
- 16D. Hu, V. V. Ordomsky, A. Y. Khodakov, Appl. Catal. B 2021, 286, 119913.
- 17M. Mao, Q. Zhang, Y. Yang, Y. Li, H. Huang, Z. Jiang, Q. Hu, X. Zhao, Green Chem. 2018, 20, 2857–2869.
- 18B. Tahir, M. Tahir, N. A. S. Amin, Appl. Catal. B 2019, 248, 167–183.
- 19S. Murcia-López, K. Villa, T. Andreu, J. R. Morante, ACS Catal. 2014, 4, 3013–3019.
- 20X. Pan, X. Chen, Z. Yi, Phys. Chem. Chem. Phys. 2016, 18, 31400–31409.
- 21J. Wei, J. Yang, Z. Wen, J. Dai, Y. Li, B. Yao, RSC Adv. 2017, 7, 37508–37521.
- 22G. Liu, L. Wang, H. G. Yang, H.-M. Cheng, G. Q. Lu, J. Mater. Chem. 2010, 20, 831–843.
- 23H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. 2016, 3, 1500389.
- 24M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O′Shea, M. H. Entezari, D. D. Dionysiou, Appl. Catal. B 2012, 125, 331–349.
- 25B. Han, W. Wei, M. Li, K. Sun, Y. H. Hu, Chem. Commun. 2019, 55, 7816–7819.
- 26Z. Li, X. Pan, Z. Yi, J. Mater. Chem. A 2019, 7, 469–475.
- 27Y. Zhou, L. Zhang, W. Wang, Nat. Commun. 2019, 10, 506.
- 28P. Pascariu, I. V. Tudose, M. Suchea, J. Nanosci. Nanotechnol. 2019, 19, 295–306.
- 29B. László, K. Baán, E. Varga, A. Oszkó, A. Erdőhelyi, Z. Kónya, J. Kiss, Appl. Catal. B 2016, 199, 473–484.
- 30X. Chen, Y. Li, X. Pan, D. Cortie, X. Huang, Z. Yi, Nat. Commun. 2016, 7, 12273.
- 31Z. Li, M. A. Boda, X. Pan, Z. Yi, ACS Sustainable Chem. Eng. 2019, 7, 19042–19049.
- 32H. H. Mohamed, D. W. Bahnemann, Appl. Catal. B 2012, 128, 91–104.
- 33Y. Hu, C. Gao, Y. Xiong, Solar RRL 2020, 2000468.
- 34H. Son, G. Pu-Xian, Adv. Energy Mater. 2016, 6, 1600683.
- 35K. Shimura, H. Kawai, T. Yoshida, H. Yoshida, ACS Catal. 2012, 2, 2126–2134.
- 36X. Li, J. Xie, H. Rao, C. Wang, J. Tang, Angew. Chem. Int. Ed. 2020, 59, 19702–19707; Angew. Chem. 2020, 132, 19870–19875.
- 37L. Meng, Z. Chen, Z. Ma, S. He, Y. Hou, H.-H. Li, R. Yuan, X.-H. Huang, X. Wang, X. Wang, J. Long, Energy Environ. Sci. 2018, 11, 294–298.
- 38Y. Zeng, H. C. Liu, J. S. Wang, X. Y. Wu, S. L. Wang, Catal. Sci. Technol. 2020, 10, 2329–2332.
- 39M. J. Boyd, A. A. Latimer, C. F. Dickens, A. C. Nielander, C. Hahn, J. K. Nørskov, D. C. Higgins, T. F. Jaramillo, ACS Catal. 2019, 9, 7578–7587.
- 40M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, Renewable Sustainable Energy Rev. 2007, 11, 401–425.
- 41B. Tahir, M. Tahir, N. A. Saidina Amin, Chem. Eng. Trans. 2017, 56, 1123–1128.
- 42M. Tahir, J. CO2 Util. 2020, 38, 99–112.
- 43S. Verma, S. A. Younis, K.-H. Kim, F. Dong, J. Hazard. Mater. 2021, 415, 125651.
- 44L. Li, G. D. Li, C. Yan, X. Y. Mu, X. L. Pan, X. X. Zou, K. X. Wang, J. S. Chen, Angew. Chem. Int. Ed. 2011, 50, 8299–8303; Angew. Chem. 2011, 123, 8449–8453.
- 45A. Hameed, I. M. I. Ismail, M. Aslam, M. A. Gondal, Appl. Catal. A 2014, 470, 327–335.
- 46M. A. Gondal, A. Hameed, A. Suwaiyan, Appl. Catal. A 2003, 243, 165–174.
- 47M. A. Gondal, A. Hameed, Z. H. Yamani, A. Arfaj, Chem. Phys. Lett. 2004, 392, 372–377.
- 48Y. Li, J. Li, G. Zhang, K. Wang, X. Wu, ACS Sustainable Chem. Eng. 2019, 7, 4382–4389.
- 49P. Dong, G. Hou, X. Xi, R. Shao, F. Dong, Environ. Sci. Nano 2017, 4, 539–557.
- 50J. Zhang, K. Tse, M. Wong, Y. Zhang, J. Zhu, Front. Phys. 2016, 11, 117405.
- 51M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A. Z. Moshfegh, Thin Solid Films 2016, 605, 2–19.
- 52X. Chen, Y. Lou, S. Dayal, X. Qiu, R. Krolicki, C. Burda, C. Zhao, J. Becker, J. Nanosci. Nanotechnol. 2005, 5, 1408–1420.
- 53M. Nasirian, Y. P. Lin, C. F. Bustillo-Lecompte, M. Mehrvar, Int. J. Environ. Sci. Technol. 2018, 15, 2009–2032.
- 54N. Li, Y. Li, R. Jiang, J. Zhou, M. Liu, Appl. Surf. Sci. 2019, 498, 143861.
- 55K. Djamila, D. Abdelhamid, B. Akila, Int. J. Hydrogen Energy 2017, 42, 15002–15009.
- 56T. Hou, R. Guo, L. Chen, Y. Xie, J. Guo, W. Zhang, X. Zheng, W. Zhu, X. Tan, L. Wang, Nano Energy 2019, 65, 104003.
- 57R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li, J. Yang, D. W. Bahnemann, J. H. Pan, Catal. Today 2019, 335, 78–90.
- 58F. Pan, X. Xiang, Z. Du, E. Sarnello, T. Li, Y. Li, Appl. Catal. B 2020, 260, 118189.
- 59M. S. Hamdy, G. Mul, Appl. Catal. B 2015, 174–175, 413–420.
- 60Y. Hu, S. Higashimoto, S. Takahashi, Y. Nagai, M. Anpo, Catal. Lett. 2005, 100, 35–37.
- 61W. Yajun, W. Qisheng, Z. Xueying, W. Fengmei, S. Muhammad, H. Jun, Nanoscale 2013, 5, 8326.
- 62X. Li, C. Garlisi, Q. Guan, S. Anwer, K. Al-Ali, G. Palmisano, L. Zheng, Mater. Today 2021, http://10.1016/j.mattod.2021.02.017.
- 63W. Tu, Y. Zhou, S. Feng, Q. Xu, P. Li, X. Wang, M. Xiao, Z. Zou, Chem. Commun. 2015, 51, 13354–13357.
- 64M. R. Khan, T. W. Chuan, A. Yousuf, M. N. K. Chowdhury, C. K. Cheng, Catal. Sci. Technol. 2015, 5, 2522–2531.
- 65Q. Wang, Y. Shao, X. Shi, J. Chem. Phys. 2020, 152, 244701.
- 66J. Lang, Y. Ma, X. Wu, Y. Jiang, Y. H. Hu, Green Chem. 2020, 22, 4669–4675.
- 67T. Hou, Q. Li, Y. Zhang, W. Zhu, K. Yu, S. Wang, Q. Xu, S. Liang, L. Wang, Appl. Catal. B 2020, 273, 119072.
- 68J. Haoyang, P. Xiaobo, Y. Akira, U. Shigenori, F. Takeshi, A. Hideki, M. Masahiro, Solar RRL 2019, 3, 1900076.
- 69M. Borgwardt, J. Mahl, F. Roth, L. Wenthaus, F. Brauße, M. Blum, K. Schwarzburg, G. Liu, F. M. Toma, O. Gessner, J. Phys. Chem. Lett. 2020, 11, 5476–5481.
- 70L. Yu, D. Li, Catal. Sci. Technol. 2017, 7, 635–640.
- 71L. Yu, Y. Shao, D. Li, Appl. Catal. B 2017, 204, 216–223.
- 72H. Song, X. Meng, Z.-j. Wang, Z. Wang, H. Chen, Y. Weng, F. Ichihara, M. Oshikiri, T. Kako, J. Ye, ACS Catal. 2018, 8, 7556–7565.
- 73M. J. Kale, T. Avanesian, P. Christopher, ACS Catal. 2014, 4, 116–128.
- 74R. Jiang, B. Li, C. Fang, J. Wang, Adv. Mater. 2014, 26, 5274–5309.
- 75D. B. Ingram, P. Christopher, J. L. Bauer, S. Linic, ACS Catal. 2011, 1, 1441–1447.
- 76H. Liu, X. Meng, T. D. Dao, H. Zhang, P. Li, K. Chang, T. Wang, M. Li, T. Nagao, J. Ye, Angew. Chem. Int. Ed. 2015, 54, 11545–11549; Angew. Chem. 2015, 127, 11707–11711.
- 77H. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako, J. Ye, J. Am. Chem. Soc. 2019, 141, 20507–20515.
- 78H. Song, X. Meng, T. D. Dao, W. Zhou, H. Liu, L. Shi, H. Zhang, T. Nagao, T. Kako, J. Ye, ACS Appl. Mater. Interfaces 2018, 10, 408–416.
- 79W. Jiang, J. Low, K. Mao, D. Duan, S. Chen, W. Liu, C. W. Pao, J. Ma, S. Sang, C. Shu, X. Zhan, Z. Qi, H. Zhang, Z. Liu, X. Wu, R. Long, L. Song, Y. Xiong, J. Am. Chem. Soc. 2021, 143, 269–278.
- 80N. Li, R. Jiang, Y. Li, J. Zhou, Q. Ma, S. Shen, M. Liu, ACS Sustainable Chem. Eng. 2019, 7, 11455–11463.
- 81P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 2014, 7, 2580–2591.
- 82P. C. Hiberty, D. L. Cooper, J. Mol. Struct. THEOCHEM 1988, 169, 437–446.
10.1016/0166-1280(88)80275-6 Google Scholar
- 83J. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507–514.
- 84R. G. Bergman, Nature 2007, 446, 391–393.
- 85A. I. Olivos-Suarez, À. Szécsényi, E. J. M. Hensen, J. Ruiz-Martinez, E. A. Pidko, J. Gascon, ACS Catal. 2016, 6, 2965–2981.
- 86Y. Zhao, C. Cui, J. Han, H. Wang, X. Zhu, Q. Ge, J. Am. Chem. Soc. 2016, 138, 10191–10198.
- 87N. Agarwal, S. J. Freakley, R. U. McVicker, S. M. Althahban, N. Dimitratos, Q. He, D. J. Morgan, R. L. Jenkins, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Science 2017, 358, 223–226.
- 88H. Jiang, X. Peng, A. Yamaguchi, T. Fujita, H. Abe, M. Miyauchi, Chem. Commun. 2019, 55, 13765–13768.
- 89J. J. Xie, R. X. Jin, A. Li, Y. P. Bi, Q. S. Ruan, Y. C. Deng, Y. J. Zhang, S. Y. Yao, G. Sankar, D. Ma, J. W. Tang, Nat. Catal. 2018, 1, 889–896.
- 90S. Ramakrishnan, R. Sagi, N. Mahapatra, M. Asscher, J. Phys. Chem. C 2018, 122, 15287–15296.
- 91C. Coperet, Chem. Rev. 2010, 110, 656–680.
- 92S. Wu, X. Tan, J. Lei, H. Chen, L. Wang, J. Zhang, J. Am. Chem. Soc. 2019, 141, 6592–6600.
- 93L. Li, S. Fan, X. Mu, Z. Mi, C.-J. Li, J. Am. Chem. Soc. 2014, 136, 7793–7796.
- 94L. Li, Y. Y. Cai, G. D. Li, X. Y. Mu, K. X. Wang, J. S. Chen, Angew. Chem. Int. Ed. 2012, 51, 4702–4706; Angew. Chem. 2012, 124, 4780–4784.
- 95F. Sastre, V. Fornés, A. Corma, H. García, J. Am. Chem. Soc. 2011, 133, 17257–17261.
- 96W. Zhu, M. Shen, G. Fan, A. Yang, J. R. Meyer, Y. Ou, B. Yin, J. Fortner, M. Foston, Z. Li, Z. Zou, B. Sadtler, ACS Appl. Nano Mater. 2018, 1, 6683–6691.
- 97S. Murcia-López, M. C. Bacariza, K. Villa, J. M. Lopes, C. Henriques, J. R. Morante, T. Andreu, ACS Catal. 2017, 7, 2878–2885.
- 98S. Murcia-López, K. Villa, T. Andreu, J. R. Morante, Chem. Commun. 2015, 51, 7249–7252.
- 99Á. López-Martín, A. Caballero, G. Colón, J. Photochem. Photobiol. A 2017, 349, 216–223.
- 100J. J. Margitan, F. Kaufman, J. G. Anderson, Geophys. Res. Lett. 1974, 1, 80–81.
- 101J. D. Souza, V. S. Souza, J. D. Scholten, ACS Sustainable Chem. Eng. 2019, 7, 8090–8098.
- 102X. Yu, V. De Waele, A. Lofberg, V. Ordomsky, A. Y. Khodakov, Nat. Commun. 2019, 10, 700.
- 103J. Yang, W. Xiao, X. Chi, X. Lu, S. Hu, Z. Wu, W. Tang, Z. Ren, S. Wang, X. Yu, L. Zhang, A. Rusydi, J. Ding, Y. Guo, P.-X. Gao, Appl. Catal. B 2020, 265, 118469.
- 104Y. Fan, W. Zhou, X. Qiu, H. Li, Y. Jiang, Z. Sun, D. Han, L. Niu, Z. Tang, Nat. Sustain. 2021, 4, 509–515.
- 105D. T. Shindell, G. Faluvegi, D. M. Koch, G. A. Schmidt, N. Unger, S. E. Bauer, Science 2009, 326, 716–718.
- 106World Meteorological Organization (WMO), WMO Greenhouse Gas Bulletin, 2020.
- 107“Hydrogen Production From Biogas Reforming: An Overview of Steam Reforming, Dry Reforming, Dual Reforming, and Tri-Reforming of Methane”: D. Pham Minh, T. J. Siang, D.-V. N. Vo, T. S. Phan, C. Ridart, A. Nzihou, D. Grouset, in Hydrogen Supply Chains (Ed.: C. Azzaro-Pantel), Academic Press, London, 2018, Chapter 4, pp. 111–166.
10.1016/B978-0-12-811197-0.00004-X Google Scholar
- 108“Place of the DMTM among the other Processes of Partial Oxidation of Light Alkanes” V. Arutyunov, in Direct Methane to Methanol (Ed.: V. Arutyunov), Elsevier, Boston, 2014, Chapter 12, pp. 245–267.
10.1016/B978-0-444-63253-1.00012-X Google Scholar
- 109A. Cruellas, T. Melchiori, F. Gallucci, M. v. S. Annaland, Catal. Rev. Sci. Eng. 2018, 59, 234–294.
- 110L. Luo, J. Luo, H. Li, F. Ren, Y. Zhang, A. Liu, W.-X. Li, J. Zeng, Nat. Commun. 2021, 12, 1218.
- 111R. Jingrun, G. Weiwei, W. Hailong, Z. Bicheng, Y. Jiaguo, Q. Shi-Zhang, Adv. Mater. 2018, 30, 11800128.
- 112S. Zhang, J. Xu, H. Cheng, C. Zang, F. Bian, B. Sun, Y. shen, H. Jiang, ChemSusChem 2020, 13, 5264–5272.
- 113J. Kennedy, H. Bahruji, M. Bowker, P. R. Davies, E. Bouleghlimat, S. Issarapanacheewin, J. Photochem. Photobiol. A 2018, 356, 451–456.
- 114H. Jiang, H. Wang, S. Werth, T. Schiestel, J. Caro, Angew. Chem. Int. Ed. 2008, 47, 9341–9344; Angew. Chem. 2008, 120, 9481–9484.
- 115H. Yoshida, K. Hirao, J. Nishimoto, K. Shimura, S. Kato, H. Itoh, T. Hattori, J. Phys. Chem. C 2008, 112, 5542–5551.
- 116K. Shimura, S. Kato, T. Yoshida, H. Itoh, T. Hattori, H. Yoshida, J. Phys. Chem. C 2010, 114, 3493–3503.
- 117K. Shimura, H. Yoshida, Energy Environ. Sci. 2010, 3, 615–617.
- 118K. Shimura, H. Yoshida, Phys. Chem. Chem. Phys. 2012, 14, 2678–2684.
- 119K. Shimura, H. Kawai, T. Yoshida, H. Yoshida, Chem. Commun. 2011, 47, 8958–8960.
- 120J. Du, W. Chen, G. Wu, Y. Song, X. Dong, G. Li, J. Fang, W. Wei, Y. Sun, Catalysts 2020, 10, 196.
- 121M. S. Kim, K. H. Park, S. J. Cho, E. D. Park, Catal. Today 2021, 376, 113–118.
- 122T. T. P. Pham, S. R. Kyoung, C. Lyufei, M. Devinder, S. Tan Ji, U. P. M. Ashik, H. Jun-ichiro, M. Doan Pham, N. V. Dai-Viet, Environ. Chem. Lett. 2020, 18, 1987–2019.
- 123L. Dehimi, M. Gaillard, M. Virginie, A. Erto, Y. Benguerba, Int. J. Hydrogen Energy 2020, 45, 24657–24669.
- 124B. Han, W. Wei, L. Chang, P. Cheng, Y. H. Hu, ACS Catal. 2016, 6, 494–497.
- 125“Applications of dense ceramic membrane reactors in selected oxidation and dehydrogenation processes for chemical production”: X. Tan, K. Li, in Handbook of Membrane Reactors, Vol. 2 (Ed.: A. Basile), Woodhead Publishing, Cambridge, 2013, pp. 347–383.
- 126T. Yabe, Y. Sekine, Fuel Process. Technol. 2018, 181, 187–198.
- 127C. Zhu, S. Hou, X. Hu, J. Lu, F. Chen, K. Xie, Nat. Commun. 2019, 10, 1173.
- 128M. Tahir, B. Tahir, N. S. Amin, Mater. Res. Bull. 2015, 63, 13–23.
- 129R. Charrad, H. E. Solt, A. Domjan, F. Ayari, M. Mhamdi, J. Valyon, F. Lonyi, J. Catal. 2020, 385, 87–102.
- 130Y. Hu, Y. Nagai, D. Rahmawaty, C. Wei, M. Anpo, Catal. Lett. 2008, 124, 80–84.
- 131M. Scapinello, E. Delikonstantis, G. D. Stefanidis, Chem. Eng. Process. 2017, 117, 120–140.
- 132M. Jiayu, T. Xianjun, Z. Qingqing, W. Yan, Z. Jinlong, W. Lingzhi, ACS Catal. 2021, 11, 3352–3360.
- 133I. Julian, H. Ramirez, J. L. Hueso, R. Mallada, J. Santamaria, Chem. Eng. J. 2019, 377, 119764.
- 134S. I. In, M. G. Nielsen, P. C. Vesborg, Y. Hou, B. L. Abrams, T. R. Henriksen, O. Hansen, I. Chorkendorff, Chem. Commun. 2011, 47, 2613–2615.
- 135L. Yuliati, T. Hamajima, T. Hattori, H. Yoshida, J. Phys. Chem. C 2008, 112, 7223–7232.
- 136L. Yuliati, T. Hattori, H. Yoshida, Phys. Chem. Chem. Phys. 2005, 7, 195–201.
- 137X. Yu, V. L. Zholobenko, S. Moldovan, D. Hu, D. Wu, V. V. Ordomsky, A. Y. Khodakov, Nat. Energy 2020, 5, 511–519.
- 138Z. Chen, S. Wu, J. Ma, S. Mine, T. Toyao, M. Matsuoka, L. Wang, J. Zhang, Angew. Chem. Int. Ed. 2021, 60, 11901–11909; Angew. Chem. 2021, 133, 12008–12016.
- 139A. Yamamoto, S. Mizuba, Y. Saeki, H. Yoshida, Appl. Catal. A 2016, 521, 125–132.
- 140B. Tahir, M. Tahir, N. A. S. Amin, Appl. Surf. Sci. 2019, 493, 18–31.
- 141M. Maiuri, M. Garavelli, G. Cerullo, J. Am. Chem. Soc. 2020, 142, 3–15.
- 142J. Kirman, A. Johnston, D. A. Kuntz, M. Askerka, Y. Gao, P. Todorović, D. Ma, G. G. Privé, E. H. Sargent, Matter 2020, 2, 938–947.
- 143T. N. Nguyen, T. T. P. Nhat, K. Takimoto, A. Thakur, S. Nishimura, J. Ohyama, I. Miyazato, L. Takahashi, J. Fujima, K. Takahashi, T. Taniike, ACS Catal. 2020, 10, 921–932.
- 144R. Jinnouchi, R. Asahi, J. Phys. Chem. Lett. 2017, 8, 4279–4283.
- 145X. Zhao, F. Gu, Y. Wang, Z. Peng, J. Liu, ACS Appl. Mater. Interfaces 2020, 12, 27166–27175.
- 146T. Q. Omid, B. Ravichandar, S. Zhao-Lin, Z. Yue-Biao, G. T. Shane, J. Am. Chem. Soc. 2019, 141, 5014–5020.
- 147F. O. Ayodele, S. I. Mustapa, B. V. Ayodele, N. Mohammad, Sustainability 2020, 12, 10148.