Photocatalysis Enhanced by External Fields
Cheng Hu
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorShuchen Tu
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Na Tian
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Tianyi Ma
Discipline of Chemistry, University of Newcastle, Callaghan, NSW, 2308 Australia
Search for more papers by this authorProf. Yihe Zhang
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Hongwei Huang
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorCheng Hu
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorShuchen Tu
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Na Tian
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Tianyi Ma
Discipline of Chemistry, University of Newcastle, Callaghan, NSW, 2308 Australia
Search for more papers by this authorProf. Yihe Zhang
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Hongwei Huang
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
The efficient conversion of solar energy by means of photocatalysis shows huge potential to relieve the ongoing energy crisis and increasing environmental pollution. However, unsatisfactory conversion efficiency still hinders its practical application. The introduction of external fields can remarkably enhance the photocatalytic performance of semiconductors from the inside out. This review focuses on recent advances in the application of diverse external fields, including microwaves, mechanical stress, temperature gradient, electric field, magnetic field, and coupled fields, to boost photocatalytic reactions, for applications in, for example, contaminant degradation, water splitting, CO2 reduction, and bacterial inactivation. The relevant reinforcement mechanisms of photoabsorption, the transport and separation of photoinduced charges, and adsorption of reagents by the external fields are highlighted. Finally, the challenges and outlook for the development of external-field-enhanced photocatalysis are presented.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aJ. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919–9986;
- 1bJ. C. Colmenares, R. Luque, Chem. Soc. Rev. 2014, 43, 765–778;
- 1cX. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev. 2010, 110, 6503–6570.
- 2S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Chem. Soc. Rev. 2015, 44, 2893–2939.
- 3Q. Zeng, H. Wang, W. Fu, Y. Gong, W. Zhou, P. M. Ajayan, J. Lou, Z. Liu, Small 2015, 11, 1868–1884.
- 4
- 4aY. Liu, S. Ye, H. Xie, J. Zhu, Q. Shi, N. Ta, R. Chen, Y. Gao, H. An, W. Nie, H. Jing, F. Fan, C. Li, Adv. Mater. 2020, 32, 1906513;
- 4bJ. Li, L. Cai, J. Shang, Y. Yu, L. Zhang, Adv. Mater. 2016, 28, 4059–4064.
- 5
- 5aL. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu, M. Batmunkh, Y. Zhang, T. Ma, Adv. Mater. 2019, 31, 1900546;
- 5bH. Yu, J. Li, Y. Zhang, S. Yang, K. Han, F. Dong, T. Ma, H. Huang, Angew. Chem. Int. Ed. 2019, 58, 3880–3884; Angew. Chem. 2019, 131, 3920–3924.
- 6X. Wang, W. Gao, Z. Zhao, L. Zhao, J. P. Claverie, X. Zhang, J. Wang, H. Liu, Y. Sang, Appl. Catal. B 2019, 248, 388–393.
- 7S. Wang, G. Liu, L. Wang, Chem. Rev. 2019, 119, 5192–5247.
- 8
- 8aH. You, Y. Jia, Z. Wu, F. Wang, H. Huang, Y. Wang, Nat. Commun. 2018, 9, 2889;
- 8bH. Huang, S. Tu, C. Zeng, T. Zhang, A. H. Reshak, Y. Zhang, Angew. Chem. Int. Ed. 2017, 56, 11860–11864; Angew. Chem. 2017, 129, 12022–12026;
- 8cL. T. Tufa, K.-J. Jeong, V. T. Tran, J. Lee, ACS Appl. Mater. Interfaces 2020, 12, 6598–6606.
- 9S. Horikoshi, H. Hidaka, N. Serpone, Environ. Sci. Technol. 2002, 36, 1357–1366.
- 10F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, Angew. Chem. Int. Ed. 2019, 58, 10061–10073; Angew. Chem. 2019, 131, 10164–10176.
- 11W. Gao, J. Lu, S. Zhang, X. Zhang, Z. Wang, W. Qin, J. Wang, W. Zhou, H. Liu, Y. Sang, Adv. Sci. 2019, 6, 1901244.
- 12A. Kakekhani, S. Ismail-Beigi, E. I. Altman, Surf. Sci. 2016, 650, 302–316.
- 13L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang, X. Zhang, J.-J. Zou, Z. L. Wang, Adv. Energy Mater. 2020, 10, 2000214.
- 14M. Wang, B. Wang, F. Huang, Z. Lin, Angew. Chem. Int. Ed. 2019, 58, 7526–7536; Angew. Chem. 2019, 131, 7606–7616.
- 15S. Li, Z. Zhao, J. Zhao, Z. Zhang, X. Li, J. Zhang, ACS Appl. Nano Mater. 2020, 3, 1063–1079.
- 16S. Horikoshi, M. Abe, N. Serpone, Photochem. Photobiol. Sci. 2009, 8, 1087–1104.
- 17A. A. Amer, S. M. Reda, M. A. Mousa, M. M. Mohamed, RSC Adv. 2017, 7, 826–839.
- 18V. Nair, M. J. Muñoz-Batista, M. Fernández-García, R. Luque, J. C. Colmenares, ChemSusChem 2019, 12, 2098–2116.
- 19
- 19aS. Horikoshi, Y. Minatodani, H. Tsutsumi, H. Uchida, M. Abe, N. Serpone, J. Photochem. Photobiol. A 2013, 265, 20–28;
- 19bZ. Ai, P. Yang, X. Lu, J. Hazard. Mater. 2005, 124, 147–152.
- 20S. Horikoshi, A. Matsubara, S. Takayama, M. Sato, F. Sakai, M. Kajitani, M. Abe, N. Serpone, Appl. Catal. B 2009, 91, 362–367.
- 21S. Horikoshi, F. Sakai, M. Kajitani, M. Abe, A. V. Emeline, N. Serpone, J. Phys. Chem. C 2009, 113, 5649–5657.
- 22S. Horikoshi, H. Tsutsumi, H. Matsuzaki, A. Furube, A. V. Emeline, N. Serpone, J. Mater. Chem. C 2015, 3, 5958–5969.
- 23S. Horikoshi, H. Hidaka, N. Serpone, Chem. Phys. Lett. 2003, 376, 475–480.
- 24S. Horikoshi, A. Saitou, H. Hidaka, N. Serpone, Environ. Sci. Technol. 2003, 37, 5813–5822.
- 25L. Ling, Y. Feng, H. Li, Y. Chen, J. Wen, J. Zhu, Z. Bian, Appl. Surf. Sci. 2019, 483, 772–778.
- 26
- 26aA. J. Barik, S. V. Kulkarni, P. R. Gogate, Sep. Purif. Technol. 2016, 168, 152–160;
- 26bU. Riaz, J. Zia, Environ. Pollut. 2020, 259, 113917;
- 26cS. J. Ki, K.-J. Jeon, Y.-K. Park, S. Jeong, H. Lee, S.-C. Jung, Catal. Today 2017, 293–294, 15–22;
- 26dJ. Hong, C. Sun, S.-G. Yang, Y.-Z. Liu, J. Hazard. Mater. 2006, 133, 162–166;
- 26eG. Zhanqi, Y. Shaogui, T. Na, S. Cheng, J. Hazard. Mater. 2007, 145, 424–430;
- 26fS. Jeong, H. Lee, H. Park, K.-J. Jeon, Y.-K. Park, S.-C. Jung, Catal. Today 2018, 307, 65–72;
- 26gH. Lee, S. H. Park, Y.-K. Park, S.-J. Kim, S.-G. Seo, S. J. Ki, S.-C. Jung, Chem. Eng. J. 2015, 278, 259–264.
- 27Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, ACS Nano 2010, 4, 6285–6291.
- 28S. Bai, L. Wang, Z. Li, Y. Xiong, Adv. Sci. 2017, 4, 1600216.
- 29Z. Liang, C.-F. Yan, S. Rtimi, J. Bandara, Appl. Catal. B 2019, 241, 256–269.
- 30
- 30aJ. Wu, N. Qin, D. Bao, Nano Energy 2018, 45, 44–51;
- 30bD. Yu, Z. Liu, J. Zhang, S. Li, Z. Zhao, L. Zhu, W. Liu, Y. Lin, H. Liu, Z. Zhang, Nano Energy 2019, 58, 695–705.
- 31Y. Zhao, X. Huang, F. Gao, L. Zhang, Q. Tian, Z.-B. Fang, P. Liu, Nanoscale 2019, 11, 9085–9090.
- 32S. Singh, N. Khare, Nano Energy 2017, 38, 335–341.
- 33Y.-C. Wang, J. M. Wu, Adv. Funct. Mater. 2020, 30, 1907619.
- 34C. Hu, H. Huang, F. Chen, Y. Zhang, H. Yu, T. Ma, Adv. Funct. Mater. 2020, 30, 1908168.
- 35
- 35aX. Zhou, F. Yan, S. Wu, B. Shen, H. Zeng, J. Zhai, Small 2020, 16, 2001573;
- 35bX. Zhou, S. Wu, C. Li, F. Yan, H. Bai, B. Shen, H. Zeng, J. Zhai, Nano Energy 2019, 66, 104127.
- 36S. Xu, L. Guo, Q. Sun, Z. L. Wang, Adv. Funct. Mater. 2019, 29, 1808737.
- 37
- 37aD. Hong, W. Zang, X. Guo, Y. Fu, H. He, J. Sun, L. Xing, B. Liu, X. Xue, ACS Appl. Mater. Interfaces 2016, 8, 21302–21314;
- 37bZ. Wang, T. Hu, H. He, Y. Fu, X. Zhang, J. Sun, L. Xing, B. Liu, Y. Zhang, X. Xue, ACS Sustainable Chem. Eng. 2018, 6, 10162–10172.
- 38Y. Feng, L. Ling, Y. Wang, Z. Xu, F. Cao, H. Li, Z. Bian, Nano Energy 2017, 40, 481–486.
- 39
- 39aW. Tong, Y. Zhang, H. Huang, K. Xiao, S. Yu, Y. Zhou, L. Liu, H. Li, L. Liu, T. Huang, M. Li, Q. Zhang, R. Du, Q. An, Nano Energy 2018, 53, 513–523;
- 39bW. Wu, X. Yin, B. Dai, J. Kou, Y. Ni, C. Lu, Appl. Surf. Sci. 2020, 517, 146119;
- 39cA. Durairaj, S. Ramasundaram, T. Sakthivel, S. Ramanathan, A. Rahaman, B. Kim, S. Vasanthkumar, Appl. Surf. Sci. 2019, 493, 1268–1277.
- 40Y. Feng, H. Li, L. Ling, S. Yan, D. Pan, H. Ge, H. Li, Z. Bian, Environ. Sci. Technol. 2018, 52, 7842–7848.
- 41Y. Chen, L. Wang, R. Gao, Y.-C. Zhang, L. Pan, C. Huang, K. Liu, X.-Y. Chang, X. Zhang, J.-J. Zou, Appl. Catal. B 2019, 259, 118079.
- 42
- 42aX. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z. L. Wang, Nano Energy 2015, 13, 414–422;
- 42bM. B. Starr, J. Shi, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 5962–5966; Angew. Chem. 2012, 124, 6064–6068.
- 43K. Zhang, Z. L. Wang, Y. Yang, ACS Nano 2016, 10, 10331–10338.
- 44X. Xu, L. Xiao, Y. Jia, Z. Wu, F. Wang, Y. Wang, N. O. Haugen, H. Huang, Energy Environ. Sci. 2018, 11, 2198–2207.
- 45
- 45aZ. Wang, R. Yu, X. Wang, W. Wu, Z. L. Wang, Adv. Mater. 2016, 28, 6880–6886;
- 45bY. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu, Z. L. Wang, Adv. Mater. 2018, 30, 1705893.
- 46
- 46aJ. Chen, W. Luo, S. Yu, X. Yang, Z. Wu, H. Zhang, J. Gao, Y.-W. Mai, Y. Li, Y. Jia, Ceram. Int. 2020, 46, 9786–9793;
- 46bW. Luo, J. Ying, S. Yu, X. Yang, Y. Jia, M. Chen, H. Zhang, J. Gao, Y. Li, Y.-W. Mai, Z. Wu, Ceram. Int. 2020, 46, 12096–12101;
- 46cY. Liu, X. Wang, Y. Qiao, M. Min, L. Wang, H. Shan, Y. Ma, W. Hao, P. Tao, W. Shang, J. Wu, C. Song, T. Deng, ACS Sustainable Chem. Eng. 2019, 7, 2602–2609.
- 47
- 47aM. Min, Y. Liu, C. Song, D. Zhao, X. Wang, Y. Qiao, R. Feng, W. Hao, P. Tao, W. Shang, J. Wu, T. Deng, ACS Appl. Mater. Interfaces 2018, 10, 21246–21253;
- 47bB. Dai, J. Fang, Y. Yu, M. Sun, H. Huang, C. Lu, J. Kou, Y. Zhao, Z. Xu, Adv. Mater. 2020, 32, 1906361.
- 48
- 48aS. Tiewcharoen, C. Warakulwit, V. Lapeyre, P. Garrigue, L. Fourier, C. Elissalde, S. Buffière, P. Legros, M. Gayot, J. Limtrakul, A. Kuhn, Angew. Chem. Int. Ed. 2017, 56, 11431–11435; Angew. Chem. 2017, 129, 11589–11593;
- 48bY. Zhao, Z. Huang, W. Chang, C. Wei, X. Feng, L. Ma, X. Qi, Z. Li, Chemosphere 2017, 179, 75–83.
- 49Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820–823.
- 50J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, K. S. Kim, Science 2015, 349, 723.
- 51
- 51aC. Zhao, D. Huang, J. Chen, Y. Li, Z. Du, RSC Adv. 2016, 6, 98908–98915;
- 51bC. M. Tank, Y. S. Sakhare, N. S. Kanhe, A. B. Nawale, A. K. Das, S. V. Bhoraskar, V. L. Mathe, Solid State Sci. 2011, 13, 1500–1504.
- 52
- 52aF. Ling, X. Liu, H. Jing, Y. Chen, W. Zeng, Y. Zhang, W. Kang, J. Liu, L. Fang, M. Zhou, Phys. Chem. Chem. Phys. 2018, 20, 26083–26090;
- 52bM. Yan, X. Pan, P. Wang, F. Chen, L. He, G. Jiang, J. Wang, J. Z. Liu, X. Xu, X. Liao, J. Yang, L. Mai, Nano Lett. 2017, 17, 4109–4115;
- 52cH. Guo, W. Zhang, N. Lu, Z. Zhuo, X. C. Zeng, X. Wu, J. Yang, J. Phys. Chem. C 2015, 119, 6912–6917.
- 53
- 53aS. Park, C. W. Lee, M.-G. Kang, S. Kim, H. J. Kim, J. E. Kwon, S. Y. Park, C.-Y. Kang, K. S. Hong, K. T. Nam, Phys. Chem. Chem. Phys. 2014, 16, 10408–10413;
- 53bS. Li, L. Bai, N. Ji, S. Yu, S. Lin, N. Tian, H. Huang, J. Mater. Chem. A 2020, 8, 9268–9277.
- 54
- 54aG. Zhang, J. Cao, G. Huang, J. Li, D. Li, W. Yao, T. Zeng, Catal. Sci. Technol. 2018, 8, 6420–6428;
- 54bG. Huang, G. Zhang, Z. Gao, J. Cao, D. Li, H. Yun, T. Zeng, J. Alloys Compd. 2019, 783, 943–951.
- 55Z. Song, B. Hong, X. Zhu, F. Zhang, S. Li, J. Ding, X. Jiang, J. Bao, C. Gao, S. Sun, Appl. Catal. B 2018, 238, 248–254.
- 56H. Li, X. Quan, S. Chen, H. Yu, Appl. Catal. B 2017, 209, 591–599.
- 57M. A. Khan, M. A. Nadeem, H. Idriss, Surf. Sci. Rep. 2016, 71, 1–31.
- 58D. Li, M. H. Zhao, J. Garra, A. M. Kolpak, A. M. Rappe, D. A. Bonnell, J. M. Vohs, Nat. Mater. 2008, 7, 473–477.
- 59Y. Cui, J. Briscoe, S. Dunn, Chem. Mater. 2013, 25, 4215–4223.
- 60X. Yin, Y. Sun, X. Wu, X. Li, H. Liu, W. Gu, W. Zou, L. Zhu, Z. Fu, Y. Lu, Catal. Sci. Technol. 2020, 10, 2864–2873.
- 61C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 6804–6819.
- 62
- 62aY.-Q. Zhao, B. Liu, Z.-L. Yu, J. Ma, W. Qiang, P.-b. He, M.-Q. Cai, J. Mater. Chem. C 2017, 5, 5356–5364;
- 62bS. Liu, F. Zheng, N. Z. Koocher, H. Takenaka, F. Wang, A. M. Rappe, J. Phys. Chem. Lett. 2015, 6, 693–699.
- 63U. E. Steiner, T. Ulrich, Chem. Rev. 1989, 89, 51–147.
- 64M. Wakasa, S. Suda, H. Hayashi, N. Ishii, M. Okano, J. Phys. Chem. B 2004, 108, 11882–11885.
- 65W. Gao, Q. Liu, S. Zhang, Y. Yang, X. Zhang, H. Zhao, W. Qin, W. Zhou, X. Wang, H. Liu, Y. Sang, Nano Energy 2020, 71, 104624.
- 66J. Li, Q. Pei, R. Wang, Y. Zhou, Z. Zhang, Q. Cao, D. Wang, W. Mi, Y. Du, ACS Nano 2018, 12, 3351–3359.
- 67
- 67aJ. Zhao, N. Li, R. Yu, Z. Zhao, J. Nan, Chem. Eng. J. 2018, 349, 530–538;
- 67bN. Li, Y. Tian, J. Zhao, W. Zhan, J. Du, L. Kong, J. Zhang, W. Zuo, Chem. Eng. J. 2018, 341, 289–297.
- 68S. Yang, H. Fu, C. Sun, Z. Gao, J. Hazard. Mater. 2009, 161, 1281–1287.
- 69H. Chen, S. Yang, K. Yu, Y. Ju, C. Sun, J. Phys. Chem. A 2011, 115, 3034–3041.
- 70A. Zhihui, Y. Peng, L. Xiaohua, Chemosphere 2005, 60, 824–827.
- 71A. Fakhri, M. Azad, L. Fatolahi, S. Tahami, J. Photochem. Photobiol. B 2018, 178, 108–114.
- 72F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer, J. Sort, C. Gattinoni, B. J. Nelson, S. Pané, iScience 2018, 4, 236–246.
- 73S. Jia, Y. Su, B. Zhang, Z. Zhao, S. Li, Y. Zhang, P. Li, M. Xu, R. Ren, Nanoscale 2019, 11, 7690–7700.
- 74
- 74aJ. Ma, J. Ren, Y. Jia, Z. Wu, L. Chen, N. O. Haugen, H. Huang, Y. Liu, Nano Energy 2019, 62, 376–383;
- 74bY. Zhang, X. Huang, J. Yeom, Nano-Micro Lett. 2019, 11, 11;
- 74cD. Xiang, Z. Liu, M. Wu, H. Liu, X. Zhang, Z. Wang, Z. L. Wang, L. Li, Small 2020, 16, 1907603;
- 74dJ. Yuan, X. Huang, L. Zhang, F. Gao, R. Lei, C. Jiang, W. Feng, P. Liu, Appl. Catal. B 2020, 278, 119291.
- 75
- 75aX. Liu, L. Xiao, Y. Zhang, H. Sun, J. Materiomics 2020, 6, 256–262;
- 75bS. Xu, Z. Liu, M. Zhang, L. Guo, J. Alloys Compd. 2019, 801, 483–488;
- 75cH. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z. L. Wang, Nano Lett. 2015, 15, 2372–2379;
- 75dL. Guo, C. Zhong, J. Cao, Y. Hao, M. Lei, K. Bi, Q. Sun, Z. L. Wang, Nano Energy 2019, 62, 513–520.
- 76
- 76aY. Zhao, Z.-B. Fang, W. Feng, K. Wang, X. Huang, P. Liu, ChemCatChem 2018, 10, 3397–3401;
- 76bY. Li, Q. Wang, H. Wang, J. Tian, H. Cui, J. Colloid Interface Sci. 2019, 537, 206–214.
- 77B. Dai, C. Lu, J. Kou, Z. Xu, F. Wang, J. Alloys Compd. 2017, 696, 988–995.
- 78W. Gu, W. Zhang, L. Zhu, W. Zou, H. Liu, Z. Fu, Y. Lu, Mater. Lett. 2019, 241, 115–118.
- 79L. Qifeng, M. Jingjun, M. Sharma, R. Vaish, J. Am. Ceram. Soc. 2019, 102, 5807–5817.
- 80
- 80aB. Yang, C. Wu, J. Wang, J. Bian, L. Wang, M. Liu, Y. Du, Y. Yang, Ceram. Int. 2020, 46, 4248–4255;
- 80bX.-Z. Deng, C. Song, Y.-L. Tong, G. Yuan, F. Gao, D.-Q. Liu, S.-T. Zhang, Phys. Chem. Chem. Phys. 2018, 20, 3648–3657.
- 81Q. Fu, X. Wang, C. Li, Y. Sui, Y. Han, Z. Lv, B. Song, P. Xu, RSC Adv. 2016, 6, 108883–108887.
- 82A. Al-Keisy, L. Ren, X. Xu, W. Hao, S. X. Dou, Y. Du, J. Phys. Chem. C 2019, 123, 517–525.
- 83S. Joonwichien, E. Yamasue, H. Okumura, K. N. Ishihara, RSC Adv. 2011, 1, 1060–1063.
- 84H. J. Huang, Y. H. Wang, Y.-F. C. Chau, H.-P. Chiang, J. C.-S. Wu, Nanoscale Res. Lett. 2019, 14, 323.
- 85L. Shi, X. Wang, Y. Hu, Y. He, Solar Energy 2020, 196, 505–512.
- 86C. Si, J. Zhou, H. Gao, G. Liu, Adv. Powder Technol. 2013, 24, 295–300.
- 87Y. Lu, B. Ren, S. Chang, W. Mi, J. He, W. Wang, Mater. Lett. 2020, 260, 126979.
- 88K. Zhang, S. Wang, Y. Yang, Adv. Energy Mater. 2017, 7, 1601852.
- 89Y.-L. Liu, J. M. Wu, Nano Energy 2019, 56, 74–81.
- 90
- 90aS. Kumar, M. Sharma, A. Kumar, S. Powar, R. Vaish, J. Ind. Eng. Chem. 2019, 77, 355–364;
- 90bX. Yu, S. Wang, X. Zhang, A. Qi, X. Qiao, Z. Liu, M. Wu, L. Li, Z. L. Wang, Nano Energy 2018, 46, 29–38.
- 91Y. Feng, M. Xu, H. Liu, W. Li, H. Li, Z. Bian, Nano Energy 2020, 73, 104768.
- 92K. Zhao, B. Ouyang, Y. Yang, iScience 2018, 3, 208–216.
- 93W. Zhao, Q. Zhang, H. Wang, J. Rong, L. E, Y. Dai, Nano Energy 2020, 73, 104783.
Citing Literature
July 19, 2021
Pages 16309-16328