Direct C−H Bond Borylation of (Hetero)Arenes: Evolution from Noble Metal to Metal Free
Prof. Dr. Yahui Li
Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiao-Feng Wu
Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou, 310018 P. R. China
Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Search for more papers by this authorProf. Dr. Yahui Li
Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiao-Feng Wu
Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou, 310018 P. R. China
Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Search for more papers by this authorGraphical Abstract
Abstract
Organoboron compounds are among the most versatile and useful building blocks in modern synthetic chemistry. The past decades have seen impressive developments in the direct C−H bond borylation of (hetero)arenes in which the applied catalysts are shifting from noble metals to metal-free systems. This Highlight gives a brief summary on this evolution and focuses on recent elegant work in this field.
References
- 1E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, T. B. Marder, Chem. Rev. 2016, 116, 9091–9161.
- 2
- 2aJ. Wang, W. Zheng, L. Ding, Y. Wang, New J. Chem. 2017, 41, 1346–1362;
- 2bD. G. Hall, Boronic Acids, Wiley, Weinheim, 2005.
10.1002/3527606548 Google Scholar
- 3
- 3aW. N. Lipscomb, Science 1977, 196, 1047–1055;
- 3bE. I. Negishi, U. S. Racherla, Heteroat. Chem. 1992, 3, 201–208;
- 3cA. Suzuki, Angew. Chem. Int. Ed. 2011, 50, 6722–6737; Angew. Chem. 2011, 123, 6854–6869.
- 4
- 4aI. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890–931;
- 4bJ. F. Hartwig, Chem. Soc. Rev. 2011, 40, 1992–2002;
- 4cA. Ros, R. Fernández, J. M. Lassaletta, Chem. Soc. Rev. 2014, 43, 3229–3243.
- 5
- 5aT. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 390–391;
- 5bT. M. Boller, J. M. Murphy, M. Hapke, T. Ishiyama, N. Miyaura, J. F. Hartwig, J. Am. Chem. Soc. 2005, 127, 14263–14278.
- 6S. Paul, G. A. Chotana, D. Holmes, R. C. Reichle, R. E. Maleczka, Jr., M. R. Smith III, J. Am. Chem. Soc. 2006, 128, 15552–15553.
- 7T. A. Boebel, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 7534–7535.
- 8
- 8aP. C. Roosen, V. A. Kallepalli, B. Chattopadhyay, D. A. Singleton, R. E. Maleczka, Jr., M. R. Smith III, J. Am. Chem. Soc. 2012, 134, 11350–11353;
- 8bS. M. Preshlock, D. L. Plattner, P. E. Maligres, S. W. Krska, R. E. Maleczka, Jr., M. R. Smith III, Angew. Chem. Int. Ed. 2013, 52, 12915–12919; Angew. Chem. 2013, 125, 13153–13157.
- 9S. Kawamorita, T. Miyazaki, H. Ohmiya, T. Iwai, M. Sawamura, J. Am. Chem. Soc. 2011, 133, 19310–19313.
- 10
- 10aH.-X. Dai, J.-Q. Yu, J. Am. Chem. Soc. 2012, 134, 134–137;
- 10bB. Xiao, Y.-M. Li, Z.-J. Liu, H.-Y. Yang, Y. Fu, Chem. Commun. 2012, 48, 4854–4856.
- 11
- 11aA. Prokofjevs, J. W. Kampf, E. Vedejs, Angew. Chem. Int. Ed. 2011, 50, 2098–2101; Angew. Chem. 2011, 123, 2146–2149;
- 11bA. Del Grosso, P. J. Singleton, C. A. Muryn, M. J. Ingleson, Angew. Chem. Int. Ed. 2011, 50, 2102–2106; Angew. Chem. 2011, 123, 2150–2154.
- 12
- 12aN. Ishida, T. Moriya, T. Goya, M. Murakami, J. Org. Chem. 2010, 75, 8709–8712;
- 12bD. L. Crossley, L. Urbano, R. Neumann, S. Bourke, J. Jones, L. A. Dailey, M. Green, M. J. Humphries, S. M. King, M. L. Turner, M. J. Ingleson, ACS Appl. Mater. Interfaces 2017, 9, 28243–28249;
- 12cB. P. Dash, I. Hamilton, D. J. Tate, D. L. Crossley, J.-S. Kim, M. J. Ingleson, M. L. Turner, J. Mater. Chem. C 2019, 7, 718–724.
- 13
- 13aL. Niu, H. Yang, R. Wang, H. Fu, Org. Lett. 2012, 14, 2618–2621;
- 13bC. Cazorla, T. S. De Vries, E. Vedejs, Org. Lett. 2013, 15, 984–987.
- 14
- 14aM.-A. Légaré, M.-A. Courtemanche, É. Rochette, F.-G. Fontaine, Science 2015, 349, 513–516;
- 14bM.-A. Légaré, É. Rochette, J. Légaré Lavergne, N. Bouchard, F.-G. Fontaine, Chem. Commun. 2016, 52, 5387–5390;
- 14cJ. Légaré Lavergne, A. Jayaraman, L. C. Misal Castro, É. Rochette, F.-G. Fontaine, J. Am. Chem. Soc. 2017, 139, 14714–14723;
- 14dA. Jayaraman, L. C. Misal Castro, V. Desrosiers, F.-G. Fontaine, Chem. Sci. 2018, 9, 5057–5063;
- 14eÉ. Rochette, V. Desrosiers, Y. Soltani, F.-G. Fontaine, J. Am. Chem. Soc. 2019, 141, 12305–12311.
- 15
- 15aJ. Lv, X. Chen, X.-S. Xue, B. Zhao, Y. Liang, M. Wang, L. Jin, Y. Yuan, Y. Han, Y. Zhao, Y. Lu, J. Zhao, W.-Y. Sun, K. N. Houk, Z. Shi, Nature 2019, 575, 336–340;
- 15bS. A. Iqbal, J. Cid, R. J. Procter, M. Uzelac, K. Yuan, M. J. Ingleson, Angew. Chem. Int. Ed. 2019, 58, 15381–15385.