Indeno[1,2-b]carbazole as Methoxy-Free Donor Group: Constructing Efficient and Stable Hole-Transporting Materials for Perovskite Solar Cells
Jialin Wang
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorHeng Zhang
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorBingxue Wu
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorDr. Zhihui Wang
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorDr. Zhe Sun
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorProf. Dr. Song Xue
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yongzhen Wu
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Anders Hagfeldt
Laboratory of Photomolecular Science, Ecole Polytechnique Fédédale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Mao Liang
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorJialin Wang
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorHeng Zhang
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorBingxue Wu
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorDr. Zhihui Wang
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorDr. Zhe Sun
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorProf. Dr. Song Xue
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yongzhen Wu
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Anders Hagfeldt
Laboratory of Photomolecular Science, Ecole Polytechnique Fédédale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Mao Liang
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No.391 Binshui Xidao, Xiqing District, Tianjin, 300384 P. R. China
Search for more papers by this authorGraphical Abstract
Balancing act: The indeno[1,2-b]carbazole donor not only combines the characteristics of carbazole and fluorene, but also exhibits excellent thermal stability and high hole mobility as a result of the bulky planar structure. Hole-transporting materials based on this methoxy-free donor demonstrate a high efficiency and stability simultaneously, providing a promising strategy for developing efficient and stable perovskite-based solar cells.
Abstract
With perovskite-based solar cells (PSCs) now reaching efficiencies of greater than 20 %, the stability of PSC devices has become a critical challenge for commercialization. However, most efficient hole-transporting materials (HTMs) thus far still rely on the state-of-the-art methoxy triphenylamine (MOTPA) donor unit in which methoxy groups usually reduce the device stability. Herein, a carbazole-fluorene hybrid has been employed as a methoxy-free donor to construct organic HTMs. The indeno[1,2-b]carbazole group not only inherits the characteristics of carbazole and fluorene, but also exhibits additional advantages arising from the bulky planar structure. Consequently, M129, endowed with indeno[1,2-b]carbazole simultaneously exhibits a promising efficiency of over 20 % and superior long-term stability. The hybrid strategy toward the methoxy-free donor opens a new avenue for developing efficient and stable HTMs.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201909117-sup-0001-misc_information.pdf2.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051;
- 1bhttps://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf;
- 1cM. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Joule 2019, https://doi.org/10.1016/j.joule.2019.06.014.
- 2
- 2aJ. Shi, X. Xu, D. Li, Q. Meng, Small 2015, 11, 2472–2486;
- 2bJ. Urieta-Mora, I. García-Benito, A. Molina-Ontoria, N. Martín, Chem. Soc. Rev. 2018, 47, 8541–8571;
- 2cC. Rodríguez-Seco, L. Cabau, A. Vidal-Ferran, E. Palomares, Acc. Chem. Res. 2018, 51, 869–880.
- 3
- 3aV. A. Chiykowski, Y. Cao, H. Tan, D. P. Tabor, E. H. Sargent, A. Aspuru-Guzik, C. P. Berlinguette, Angew. Chem. Int. Ed. 2018, 57, 15529–15533; Angew. Chem. 2018, 130, 15755–15759;
- 3bX. Wang, J. Zhang, S. Yu, W. Yu, P. Fu, X. Liu, D. Tu, X. Guo, C. Li, Angew. Chem. Int. Ed. 2018, 57, 12529–12533; Angew. Chem. 2018, 130, 12709–12713.
- 4N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, J. Seo, Nat. Energy 2018, 3, 682–689.
- 5M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M. K. Nazeeruddin, Nat. Energy 2016, 1, 15017.
- 6A. Magomedov, S. Paek, P. Gratia, E. Kasparavicius, M. Daskeviciene, E. Kamarauskas, A. Gruodis, V. Jankauskas, K. Kantminiene, K. T. Cho, K. Rakstys, T. Malinauskas, V. Getautis, M. K. Nazeeruddin, Adv. Funct. Mater. 2018, 28, 1704351.
- 7F. Zhang, Z. Wang, H. Zhu, N. Pellet, J. Luo, C. Yi, X. Liu, H. Liu, S. Wang, X. Li, Y. Xiao, S. M. Zakeeruddin, D. Bi, M. Grätzel, Nano Energy 2017, 41, 469–475.
- 8Q.-Q. Ge, J.-Y. Shao, J. Ding, L.-Y. Deng, W.-K. Zhou, Y.-X. Chen, J.-Y. Ma, L.-J. Wan, J. Yao, J.-S. Hu, Y.-W. Zhong, Angew. Chem. Int. Ed. 2018, 57, 10959–10965; Angew. Chem. 2018, 130, 11125–11131.
- 9C. Shen, Y. Wu, H. Zhang, E. Li, W. Zhang, X. Xu, W. Wu, H. Tian, W. H. Zhu, Angew. Chem. Int. Ed. 2019, 58, 3784–3789; Angew. Chem. 2019, 131, 3824–3829.
- 10Y. Hua, S. Chen, D. Zhang, P. Xu, A. Sun, Y. Ou, T. Wu, H. Sun, B. Cui, X. Zhu, J. Mater. Chem. A 2019, 7, 10200–10205.
- 11H. D. Pham, T. T. Do, J. Kim, C. Charbonneau, S. Manzhos, K. Feron, W. C. Tsoi, J. R. Durrant, S. M. Jain, P. Sonar, Adv. Energy Mater. 2018, 8, 1703007.
- 12D. E. M. Rojas, K. T. Cho, Y. Zhang, M. Urbani, N. Tabet, G. de la Torre, M. K. Nazeeruddin, T. Torres, Adv. Energy Mater. 2018, 8, 1800681.
- 13
- 13aS. Mabrouk, M. Zhang, Z. Wang, M. Liang, B. Bahrami, Y. Wu, J. Wu, Q. Qiao, S. Yang, J. Mater. Chem. A 2018, 6, 7950–7958;
- 13bA. Zheng, J. Wang, N. Xu, R. Zhu, Y. Yuan, J. Zhang, J. Zhang, Z. Li, P. Wang, ACS Photonics 2018, 5, 4694–4701.
- 14J. Zhou, X. Yin, Z. Dong, A. Ali, Z. Song, N. Shrestha, S. S. Bista, Q. Bao, R. J. Ellingson, Y. Yan, W. Tang, Angew. Chem. Int. Ed. 2019, 58, https://doi.org/10.1002/anie.201905624; Angew. Chem. 2019, 131, https://doi.org/10.1002/ange.201905624.
- 15F. Liu, F. Wu, Z. Tu, Q. Liao, Y. Gong, L. Zhu, Q. Li, Z. Li, Adv. Funct. Mater. 2019, 29, 1901296.
- 16X.-D. Zhu, X.-J. Ma, Y.-K. Wang, Y. Li, C.-H. Gao, Z.-K. Wang, Z.-Q. Jiang, L.-S. Liao, Adv. Funct. Mater. 2019, 29, 1807094.
- 17Y. Li, K. R. Scheel, R. G. Clevenger, W. Shou, H. Pan, K. V. Kilway, Z. Peng, Adv. Energy Mater. 2018, 8, 1801248.
- 18S. Paek, P. Qin, Y. Lee, K. T. Cho, P. Gao, G. Grancini, E. Oveisi, P. Gratia, K. Rakstys, S. A. Al-Muhtaseb, C. Ludwig, J. Ko, M. K. Nazeeruddin, Adv. Mater. 2017, 29, 1606555.
- 19X. Sun, Q. Xue, Z. Zhu, Q. Xiao, K. Jiang, H. Yip, H. Yan, Z. Li, Chem. Sci. 2018, 9, 2698–2704.
- 20T. Qin, W. Huang, J.-E. Kim, D. Vak, C. Forsyth, C. R. McNeill, Y.-B. Cheng, Nano Energy 2017, 31, 210–217.
- 21B. Xu, D. Bi, Y. Hua, P. Liu, M. Cheng, M. Grätzel, L. Kloo, A. Hagfeldt, L. Sun, Energy Environ. Sci. 2016, 9, 873–877.
- 22H. Nishimura, N. Ishida, A. Shimazaki, A. Wakamiya, A. Saeki, L. T. Scott, Y. Murata, J. Am. Chem. Soc. 2015, 137, 15656–15659.
- 23
- 23aY. Wu, Z. Wang, M. Liang, H. Cheng, M. Li, L. Liu, B. Wang, J. Wu, R. Prasad Ghimire, X. Wang, Z. Sun, S. Xue, Q. Qiao, ACS Appl. Mater. Interfaces 2018, 10, 17883–17895;
- 23bL. Liu, Y. Wu, M. Li, X. Zong, Z. Sun, M. Liang, S. Xue, Chem. Commun. 2018, 54, 14025–14028.
- 24J. Zhang, B. Xu, M. B. Johansson, N. Vlachopoulos, G. Boschloo, L. Sun, E. M. J. Johansson, A. Hagfeldt, ACS Nano 2016, 10, 6816–6825.
- 25J. Wu, C. Liu, M. Hu, X. Deng, W. Tan, Y. Tian, B. Xu, J. Mater. Chem. A 2018, 6, 13123–13132.
- 26G.-W. Kim, J. Lee, G. Kang, T. Kim, T. Park, Adv. Energy Mater. 2018, 8, 1701935.
- 27
- 27aJ. Cao, X. Lv, P. Zhang, T. T. Chuong, B. Wu, X. Feng, C. Shan, J. Liu, Y. Tang, Adv. Mater. 2018, 30, 1800568;
- 27bS. Chen, P. Liu, Y. Hua, Y. Li, L. Kloo, X. Wang, B. Ong, W.-K. Wong, X. Zhu, ACS Appl. Mater. Interfaces 2017, 9, 13231–13239.
- 28X. Jiang, D. Wang, Z. Yu, W. Ma, H.-B. Li, X. Yang, F. Liu, A. Hagfeldt, L. Sun, Adv. Energy Mater. 2019, 9, 1803287.
- 29Y. Feng, Q. Hu, E. Rezaee, M. Li, Z. X. Xu, A. Lorenzoni, F. Mercuri, M. Muccini, Adv. Energy Mater. 2019, 9, 1901019.
- 30D. Zhang, T. Wu, P. Xu, Y. Ou, A. Sun, H. Ma, B. Cui, H. Sun, L. Ding, Y. Hua, J. Mater. Chem. A 2019, 7, 10319–10324.
- 31X. Zhao, H.-S. Kim, J.-Y. Seo, N.-G. Park, ACS Appl. Mater. Interfaces 2017, 9, 7148–7153.
- 32P. Agarwala, D. Kabra, J. Mater. Chem. A 2017, 5, 1348–1373.
- 33J. Zhang, B. Xu, L. Yang, C. Ruan, L. Wang, P. Liu, W. Zhang, N. Vlachopoulos, L. Kloo, G. Boschloo, L. Sun, A. Hagfeldt, E. M. J. Johansson, Adv. Energy Mater. 2018, 8, 1701209.
- 34M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989–1997.
- 35C. Ruiz, U. K. Pandey, R. Termine, E. M. Garcia-Frutos, G. Lopez-Espejo, R. P. Ortiz, W. Huang, T. J. Marks, A. Facchetti, M. C. Ruiz Delgado, A. Golemme, B. Gomez-Lor, ACS Appl. Mater. Interfaces 2016, 8, 26964–26971.