A Phthalocyanine-Based Layered Two-Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction
Dr. Haixia Zhong
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorDr. Khoa Hoang Ly
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorMingchao Wang
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorDr. Yulia Krupskaya
Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
Search for more papers by this authorXiaocang Han
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorDr. Jichao Zhang
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorDr. Jian Zhang
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorDr. Vladislav Kataev
Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
Search for more papers by this authorProf. Bernd Büchner
Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
Search for more papers by this authorProf. Inez M. Weidinger
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorProf. Stefan Kaskel
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorProf. Pan Liu
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Mingwei Chen
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21214 USA
Search for more papers by this authorCorresponding Author
Dr. Renhao Dong
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorCorresponding Author
Prof. Xinliang Feng
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorDr. Haixia Zhong
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorDr. Khoa Hoang Ly
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorMingchao Wang
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorDr. Yulia Krupskaya
Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
Search for more papers by this authorXiaocang Han
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorDr. Jichao Zhang
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorDr. Jian Zhang
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorDr. Vladislav Kataev
Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
Search for more papers by this authorProf. Bernd Büchner
Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
Search for more papers by this authorProf. Inez M. Weidinger
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorProf. Stefan Kaskel
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorProf. Pan Liu
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Mingwei Chen
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21214 USA
Search for more papers by this authorCorresponding Author
Dr. Renhao Dong
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorCorresponding Author
Prof. Xinliang Feng
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorGraphical Abstract
Thanks to the links: A copper phthalocyanine-based 2D conjugated MOF with square-planar cobalt bis(dihydroxy) units (Co-O4) as linkages serves as an electrocatalyst for the oxygen reduction reaction with high catalytic activity (E1/2=0.83 V vs. RHE). The linking Co centers with optimized electronic structure (eg=1) are identified as the active sites.
Abstract
Layered two-dimensional (2D) conjugated metal–organic frameworks (MOFs) represent a family of rising electrocatalysts for the oxygen reduction reaction (ORR), due to the controllable architectures, excellent electrical conductivity, and highly exposed well-defined molecular active sites. Herein, we report a copper phthalocyanine based 2D conjugated MOF with square-planar cobalt bis(dihydroxy) complexes (Co-O4) as linkages (PcCu-O8-Co) and layer-stacked structures prepared via solvothermal synthesis. PcCu-O8-Co 2D MOF mixed with carbon nanotubes exhibits excellent electrocatalytic ORR activity (E1/2=0.83 V vs. RHE, n=3.93, and jL=5.3 mA cm−2) in alkaline media, which is the record value among the reported intrinsic MOF electrocatalysts. Supported by in situ Raman spectro-electrochemistry and theoretical modeling as well as contrast catalytic tests, we identified the cobalt nodes as ORR active sites. Furthermore, when employed as a cathode electrocatalyst for zinc–air batteries, PcCu-O8-Co delivers a maximum power density of 94 mW cm−2, outperforming the state-of-the-art Pt/C electrocatalysts (78.3 mW cm−2).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201907002-sup-0001-misc_information.pdf2.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 2G. Li, S. Zhao, Y. Zhang, Z. Tang, Adv. Mater. 2018, 30, 1800702.
- 3R. Dong, P. Han, H. Arora, M. Ballabio, M. Karakus, Z. Zhang, C. Shekhar, P. Adler, P. S. Petkov, A. Erbe, S. C. B. Mannsfeld, C. Felser, T. Heine, M. Bonn, X. Feng, E. Canovas, Nat. Mater. 2018, 17, 1027.
- 4G. Maurin, C. Serre, A. Cooper, G. Ferey, Chem. Soc. Rev. 2017, 46, 3104.
- 5M. L. Aubrey, B. M. Wiers, S. C. Andrews, T. Sakurai, S. E. Reyes-Lillo, S. M. Hamed, C.-J. Yu, L. E. Darago, J. A. Mason, J.-O. Baeg, F. Grandjean, G. J. Long, S. Seki, J. B. Neaton, P. Yang, J. R. Long, Nat. Mater. 2018, 17, 625.
- 6N. Huang, K. Wang, H. Drake, P. Cai, J. Pang, J. Li, S. Che, L. Huang, Q. Wang, H. C. Zhou, J. Am. Chem. Soc. 2018, 140, 6383.
- 7A. Kirchon, L. Feng, H. F. Drake, E. A. Joseph, H. C. Zhou, Chem. Soc. Rev. 2018, 47, 8611.
- 8K. S. Pedersen, P. Perlepe, M. L. Aubrey, D. N. Woodruff, S. E. Reyes-Lillo, A. Reinholdt, L. Voigt, Z. Li, K. Borup, M. Rouzieres, D. Samohvalov, F. Wilhelm, A. Rogalev, J. B. Neaton, J. R. Long, R. Clerac, Nat. Chem. 2018, 10, 1056.
- 9M. Jahan, Q. Bao, K. P. Loh, J. Am. Chem. Soc. 2012, 134, 6707.
- 10J. Mao, L. Yang, P. Yu, X. Wei, L. Mao, Electrochem. Commun. 2012, 19, 29.
- 11K. Cho, S.-H. Han, M. P. Suh, Angew. Chem. Int. Ed. 2016, 55, 15301; Angew. Chem. 2016, 128, 15527–15531.
- 12H. Wang, F.-X. Yin, B.-H. Chen, X.-B. He, P.-L. Lv, C.-Y. Ye, D.-J. Liu, Appl. Catal. B 2017, 205, 55.
- 13P. Liao, J. Shen, J. Zhan, Coord. Chem. Rev. 2018, 373, 22.
- 14J. Duan, S. Chen, C. Zhao, Nat. Commun. 2017, 8, 15341.
- 15J. Guo, C. Y. Lin, Z. Xia, Z. Xiang, Angew. Chem. Int. Ed. 2018, 57, 12567; Angew. Chem. 2018, 130, 12747.
- 16R. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang, X. Feng, Angew. Chem. Int. Ed. 2015, 54, 12058; Angew. Chem. 2015, 127, 12226.
- 17E. M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath, M. Dincă, Nat. Commun. 2016, 7, 10942.
- 18R. Dong, Z. Zheng, D. C. Tranca, J. Zhang, N. Chandrasekhar, S. Liu, X. Zhuang, G. Seifert, X. Feng, Chem. Eur. J. 2017, 23, 2255.
- 19M. Zhao, Y. Huang, Y. Peng, Z. Huang, Q. Ma, H. Zhang, Chem. Soc. Rev. 2018, 47, 6267.
- 20D. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A. A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok, X. Zou, Y. Cui, Z. Bao, Nat. Energy 2018, 3, 30.
- 21R. Dong, T. Zhang, X. Feng, Chem. Rev. 2018, 118, 6189.
- 22Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, H. Zhang, Chem. Rev. 2018, 118, 6409.
- 23L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Chem. Rev. 2017, 117, 8129.
- 24A. J. Clough, J. W. Yoo, M. H. Mecklenburg, S. C. Marinescu, J. Am. Chem. Soc. 2015, 137, 118.
- 25A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Chem. Rev. 2018, 118, 2302.
- 26M. L. Pegis, C. F. Wise, D. J. Martin, J. M. Mayer, Chem. Rev. 2018, 118, 2340.
- 27Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394.
- 28Y. He, S. Hwang, D. A. Cullen, M. A. Uddin, L. Langhorst, B. Li, S. Karakalos, A. J. Kropf, E. C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K. L. More, G. Wang, S. Litster, G. Wu, Energy Environ. Sci. 2019, 12, 250.
- 29J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546.
- 30H. Wang, R. Liu, Y. Li, X. Lü, Q. Wang, S. Zhao, K. Yuan, Z. Cui, X. Li, S. Xin, R. Zhang, M. Lei, Z. Lin, Joule 2018, 2, 337.
- 31Y. Liu, C. Xiao, P. Huang, M. Cheng, Y. Xie, Chem 2018, 4, 1263.
- 32H. Nagatomi, N. Yanai, E. Yamada, K. Shiraishi, N. Kimizuka, Chem. Eur. J. 2018, 24, 1806.
- 33D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136, 8859.
- 34M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, M. Dinca, Angew. Chem. Int. Ed. 2015, 54, 4349; Angew. Chem. 2015, 127, 4423–4426.
- 35H. van der Heide, R. Hemmel, C. F. van Bruggen, C. Haas, J. Solid State Chem. 1980, 33, 17.
- 36T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis, A. A. Gewirth, J. Am. Chem. Soc. 2018, 140, 5791.
- 37Q. Lu, J. Hu, K. Tang, B. Deng, Y. Qian, G. Zhou, X. Liu, Mater. Chem. Phys. 2001, 69, 278.
- 38Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, Y. Xie, J. Am. Chem. Soc. 2014, 136, 15670.
- 39W.-S. Yoon, K.-B. Kim, M.-G. Kim, M.-K. Lee, H.-J. Shin, J.-M. Lee, J.-S. Lee, C.-H. Yo, J. Phys. Chem. B 2002, 106, 2526.
- 40A. M. Saib, A. Borgna, J. van de Loosdrecht, P. J. van Berge, J. W. Niemantsverdriet, Appl. Catal. A 2006, 312, 12.
- 41T. Y. Chen, J. Su, Z. Zhang, C. Cao, X. Wang, R. Si, X. Liu, B. Shi, J. Xu, Y.-F. Han, ACS Catal. 2018, 8, 8606.
- 42J. B. Gerken, J. G. McAlpin, J. Y. Chen, M. L. Rigsby, W. H. Casey, R. D. Britt, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 14431.
- 43F. Li, G.-F. Han, H.-J. Noh, S.-J. Kim, Y. Lu, H. Y. Jeong, Z. Fu, J.-B. Baek, Energy Environ. Sci. 2018, 11, 2263.
- 44H. Wu, H. Li, X. Zhao, Q. Liu, J. Wang, J. Xiao, S. Xie, R. Si, F. Yang, S. Miao, X. Guo, G. Wang, X. Bao, Energy Environ. Sci. 2016, 9, 3736.
- 45Q. Lai, J. Zhu, Y. Zhao, Y. Liang, J. He, J. Chen, Small 2017, 13, 1700740.
- 46Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394.
- 47K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
- 48T. Ling, D. Y. Yan, Y. Jiao, H. Wang, Y. Zheng, X. Zheng, J. Mao, X. W. Du, Z. Hu, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2016, 7, 12876.
- 49B. S. Yeo, A. T. Bell, J. Am. Chem. Soc. 2011, 133, 5587.
- 50C.-W. Tang, C.-B. Wang, S.-H. Chien, Thermochim. Acta 2008, 473, 68.
- 51V. G. Hadjiev, M. N. Iliev, I. V. Vergilov, J. Phys. C: Solid State Phys 1988, 21, L199.
- 52J. Yang, H. Liu, W. N. Martens, R. L. Frost, J. Phys. Chem. C 2010, 114, 111.