Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear- and Electron-Resonance Techniques
Stephan Wagner
TU Darmstadt, Graduate School Energy Science and Engineering, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
TU Darmstadt, Department of Material and Earth Sciences, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
Search for more papers by this authorDr. Hendrik Auerbach
TU Kaiserslautern, Department of Physics, Biophysics and Medical Physics, Erwin-Schrödinger-Strasse 46, 67663 Kaiserslautern, Germany
Search for more papers by this authorDr. Claudia E. Tait
Freie Universität Berlin, Berlin Joint EPR Lab, Department of Physics, Arnimallee 14, 14195 Berlin, Germany
Search for more papers by this authorDr.-Ing. Ioanna Martinaiou
TU Darmstadt, Graduate School Energy Science and Engineering, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
TU Darmstadt, Department of Chemistry, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
Search for more papers by this authorShyam C. N. Kumar
Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorProf. Christian Kübel
TU Darmstadt, Department of Material and Earth Sciences, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Karlsruhe Institute of Technology (KIT), Nano Micro Facility, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorDr. Ilya Sergeev
Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
Search for more papers by this authorDr. Hans-Christian Wille
Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
Search for more papers by this authorJun.-Prof. Jan Behrends
Freie Universität Berlin, Berlin Joint EPR Lab, Department of Physics, Arnimallee 14, 14195 Berlin, Germany
Search for more papers by this authorDr. Juliusz A. Wolny
TU Kaiserslautern, Department of Physics, Biophysics and Medical Physics, Erwin-Schrödinger-Strasse 46, 67663 Kaiserslautern, Germany
Search for more papers by this authorProf. Volker Schünemann
TU Kaiserslautern, Department of Physics, Biophysics and Medical Physics, Erwin-Schrödinger-Strasse 46, 67663 Kaiserslautern, Germany
Search for more papers by this authorCorresponding Author
Jun.-Prof. Ulrike I. Kramm
TU Darmstadt, Graduate School Energy Science and Engineering, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
TU Darmstadt, Department of Material and Earth Sciences, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
TU Darmstadt, Department of Chemistry, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
Search for more papers by this authorStephan Wagner
TU Darmstadt, Graduate School Energy Science and Engineering, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
TU Darmstadt, Department of Material and Earth Sciences, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
Search for more papers by this authorDr. Hendrik Auerbach
TU Kaiserslautern, Department of Physics, Biophysics and Medical Physics, Erwin-Schrödinger-Strasse 46, 67663 Kaiserslautern, Germany
Search for more papers by this authorDr. Claudia E. Tait
Freie Universität Berlin, Berlin Joint EPR Lab, Department of Physics, Arnimallee 14, 14195 Berlin, Germany
Search for more papers by this authorDr.-Ing. Ioanna Martinaiou
TU Darmstadt, Graduate School Energy Science and Engineering, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
TU Darmstadt, Department of Chemistry, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
Search for more papers by this authorShyam C. N. Kumar
Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorProf. Christian Kübel
TU Darmstadt, Department of Material and Earth Sciences, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Karlsruhe Institute of Technology (KIT), Nano Micro Facility, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorDr. Ilya Sergeev
Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
Search for more papers by this authorDr. Hans-Christian Wille
Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
Search for more papers by this authorJun.-Prof. Jan Behrends
Freie Universität Berlin, Berlin Joint EPR Lab, Department of Physics, Arnimallee 14, 14195 Berlin, Germany
Search for more papers by this authorDr. Juliusz A. Wolny
TU Kaiserslautern, Department of Physics, Biophysics and Medical Physics, Erwin-Schrödinger-Strasse 46, 67663 Kaiserslautern, Germany
Search for more papers by this authorProf. Volker Schünemann
TU Kaiserslautern, Department of Physics, Biophysics and Medical Physics, Erwin-Schrödinger-Strasse 46, 67663 Kaiserslautern, Germany
Search for more papers by this authorCorresponding Author
Jun.-Prof. Ulrike I. Kramm
TU Darmstadt, Graduate School Energy Science and Engineering, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
TU Darmstadt, Department of Material and Earth Sciences, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
TU Darmstadt, Department of Chemistry, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
Search for more papers by this authorGraphical Abstract
An Fe–N–C catalyst is analyzed using nuclear- and electron-resonance techniques. The results show that even after mild pyrolysis and acid leaching, it contains considerable fractions of α-iron and iron oxide. This raises the question how many FeN4 sites, which are active centers in the oxygen reduction reaction, can be present in Fe–N–C catalysts prepared by pyrolysis at 900 °C and above.
Abstract
Fe–N–C catalysts are very promising materials for fuel cells and metal–air batteries. This work gives fundamental insights into the structural composition of an Fe–N–C catalyst and highlights the importance of an in-depth characterization. By nuclear- and electron-resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of α-iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Fe–N–C catalysts prepared by pyrolysis at 900 °C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with end-on bonded oxygen as one of the axial ligands.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201903753-sup-0001-misc_information.pdf1,014.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. L. Wang, D. Xu, J. J. Xu, X. B. Zhang, Chem. Soc. Rev. 2014, 43, 7746–7786;
- 1bF. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, P. Zelenay, Energy Environ. Sci. 2011, 4, 114–130;
- 1cX. Zhao, M. Chen, J. Zuo, J. Wang, Z. Liu, L. Wang, B. Liu, G. Wu, H. Zhang, H. Yang, J. Electrochem. Soc. 2018, 165, F 1278–F1285.
- 2
- 2aU. I. Koslowski, I. Abs-Wurmbach, S. Fiechter, P. Bogdanoff, J. Phys. Chem. C 2008, 112, 15356–15366;
- 2bU. I. Kramm, M. Lefèvre, N. Larouche, D. Schmeisser, J.-P. Dodelet, J. Am. Chem. Soc. 2014, 136, 978–985;
- 2cU. I. Kramm, I. Herrmann-Geppert, J. Behrends, K. Lips, S. Fiechter, P. Bogdanoff, J. Am. Chem. Soc. 2016, 138, 635–640;
- 2dA. Zitolo, V. Goellner, V. Armel, M. T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937–942;
- 2eJ. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee, Q. Jia, Energy Environ. Sci. 2016, 9, 2418–2432.
- 3U. I. Kramm, L. Ni, S. Wagner, Adv. Mater. 2019, https://doi.org/10.1002/adma.201805623.
- 4U. I. Kramm, I. Abs-Wurmbach, I. Herrmann-Geppert, J. Radnik, S. Fiechter, P. Bogdanoff, J. Electrochem. Soc. 2011, 158, B 69–B78.
- 5
- 5aE. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J. P. Dodelet, Nat. Commun. 2011, 2, 416;
- 5bZ. Liu, F. Sun, L. Gu, G. Chen, T. Shang, J. Liu, Z. Le, X. Li, H. B. Wu, Y. Lu, Adv. Energy Mater. 2017, 7, 1701154;
- 5cR. Wu, J. Wang, K. Chen, S. Chen, J. Li, Q. Wang, Y. Nie, Y. Song, H. Chen, Z. Wei, Electrochim. Acta 2017, 244, 47–53;
- 5dN. D. Leonard, S. Wagner, F. Luo, J. Steinberg, W. Ju, N. Weidler, H. Wang, U. I. Kramm, P. Strasser, ACS Catal. 2018, 8, 1640–1647;
- 5eM. Ferrandon, A. J. Kropf, D. J. Myers, K. Artyushkova, U. Kramm, P. Bogdanoff, G. Wu, C. M. Johnston, P. Zelenay, J. Phys. Chem. C 2012, 116, 16001–16013.
- 6A. L. Bouwkamp-Wijnoltz, W. Visscher, J. A. R. van Veen, E. Boellaard, A. M. van der Kraan, S. C. Tang, J. Phys. Chem. B 2002, 106, 12993–13001.
- 7
- 7aA. Morozan, M. T. Sougrati, V. Goellner, D. Jones, L. Stievano, F. Jaouen, Electrochim. Acta 2014, 119, 192–205;
- 7bJ. L. Kneebone, S. L. Daifuku, J. A. Kehl, G. Wu, H. T. Chung, M. Y. Hu, E. E. Alp, K. L. More, P. Zelenay, E. F. Holby, M. L. Neidig, J. Phys. Chem. C 2017, 121, 16283–16290;
- 7cS. Wagner, I. Martinaiou, A. Shahraei, N. Weidler, U. I. Kramm, Hyperfine Interact. 2018, 239, 10;
10.1007/s10751-017-1485-8 Google Scholar
- 7dH. Schulenburg, S. Stankov, V. Schünemann, J. Radnik, I. Dorbandt, S. Fiechter, P. Bogdanoff, H. Tributsch, J. Phys. Chem. B 2003, 107, 9034–9041.
- 8H. H. Wickman, M. P. Klein, D. A. Shirley, Phys. Rev. 1966, 152, 345.
- 9
- 9aE. Bill, V. Schünemann, A. X. Trautwein, R. Weiss, J. Fischer, A. Tabard, R. Guilard, Inorg. Chim. Acta 2002, 420, 420–426;
- 9bV. Mereacre, M. Schlageter, A. Eichhöfer, T. Bauer, J. A. Wolny, V. Schünemann, A. K. Powell, J. Magn. Magn. Mater. 2016, 407, 87–91;
- 9cJ. Li, B. C. Noll, A. G. Oliver, C. E. Schulz, W. R. Scheidt, J. Am. Chem. Soc. 2013, 135, 15627–15641.
- 10M. T. Sougrati, V. Goellner, A. K. Schuppert, L. Stievano, F. Jaouen, Catal. Today 2016, 262, 110–120.
- 11
- 11aW. R. Scheidt, J. Li, J. T. Sage, Chem. Rev. 2017, 117, 12532–12563;
- 11bH. Auerbach, I. Faus, S. Rackwitz, J. A. Wolny, F. A. Walker, A. I. Chumakov, H. Ogata, M. Knipp, V. Schünemann, Hyperfine Interact. 2014, 226, 439–443.
- 12K. L. Ronayne, H. Paulsen, A. Hofer, A. C. Dennis, J. A. Wolny, A. I. Chumakov, V. Schunemann, H. Winkler, H. Spiering, A. Bousseksou, P. Gutlich, A. X. Trautwein, J. J. McGarvey, Phys. Chem. Chem. Phys. 2006, 8, 4685–4693.
- 13
- 13aS. Brüller, H.-W. Liang, U. I. Kramm, J. W. Krumpfer, X. Feng, K. Müllen, J. Mater. Chem. A 2015, 3, 23799–23808;
- 13bY. Zhu, B. Zhang, X. Liu, D. W. Wang, D. S. Su, Angew. Chem. Int. Ed. 2014, 53, 10673–10677; Angew. Chem. 2014, 126, 10849–10853.
- 14J. Blomquist, H. Lång, R. Larsson, A. Widelöv, J. Chem. Soc. Faraday Trans. 1992, 88, 2007–2011.
- 15U. I. Kramm, A. Zana, T. Vosch, S. Fiechter, M. Arenz, D. Schmeißer, J. Solid State Electrochem. 2016, 20, 969–981.
- 16
- 16aE. L. Bominaar, X. Q. Ding, A. Gismelseed, E. Bill, H. Winkler, A. X. Trautwein, H. Nasri, J. Fischer, R. Weiss, Inorg. Chem. 1992, 31, 1845–1854;
- 16bJ. Subramanian, Electron Paramagnetic Resonance Spectroscopy of Porphyrins and Metalloporphyrins, Vol. 1, Elsevier Sci Puplishing, Amstrerdam, 1975;
- 16cV. Schünemann, A. X. Trautwein, I. M. C. M. Rietjens, M. G. Boersma, C. Veeger, D. Mandon, R. Weiss, K. Bahl, C. Colapietro, M. Piech, R. N. Austin, Inorg. Chem. 1999, 38, 4901–4905.
- 17
- 17aD. T. Petasis, M. P. Hendrich, Methods in Enzymology, Vol. 563, Elsevier Scientific Publishing, 2015, pp. 171–208;
- 17bY. Ohgo, Y. Chiba, D. Hashizume, H. Uekuas, T. Ozeki, M. Nakamura, Chem. Commun. 2006, 1935–1937.
- 18U. I. Kramm, Ph.D. thesis, Technische Universität Berlin, 2009.
- 19
- 19aB. Roldan Cuenya, L. K. Ono, J. R. Croy, K. Paredis, A. Kara, H. Heinrich, J. Zhao, E. E. Alp, A. T. DelaRiva, A. Datye, E. A. Stach, W. Keune, Phys. Rev. B 2012, 86, 165406;
- 19bJ. Marx, H. Huang, I. Faus, S. Rackwitz, J. A. Wolny, K. Schlage, R. Ulber, H. C. Wille, V. Schünemann, Hyperfine Interact. 2014, 226, 661–665.
- 20S. Shylesh, V. Schünemann, W. R. Thiel, Angew. Chem. Int. Ed. 2010, 49, 3428–3459; Angew. Chem. 2010, 122, 3504–3537.
- 21W. Zeng, A. Barabanschikov, N. Wang, Y. Lu, J. Zhao, W. Sturhahn, E. E. Alp, J. T. Sage, Chem. Commun. 2012, 48, 6340–6342.
- 22J. Li, Q. Penp, A. Barabanschikov, J. W. Pavlik, E. E. Alp, W. Sturhahn, J. Zhao, C. E. Schulz, J. T. Sage, W. R. Scheidt, Chem. Eur. J. 2011, 17, 11178–11185.
- 23B. K. Rai, S. M. Durbin, E. W. Prohofsky, J. T. Sage, G. R. A. Wyllie, W. R. Scheidt, W. Sturhahn, E. E. Alp, Biophys. J. 2002, 82, 2951–2963.
- 24D. A. Scherson, C. A. Fierro, D. Tryk, S. L. Gupta, E. B. Yeager, J. Eldrige, R. W. Hoffman, J. Electroanal. Chem. 1985, 184, 419–426.
- 25B. Roldan Cuenya, A. Naitabdi, J. Croy, W. Sturhahn, J. Y. Zhao, E. E. Alp, R. Meyer, D. Sudfeld, E. Schuster, W. Keune, Phys. Rev. B 2007, 76, 195422.
- 26
- 26aJ. T. Sage, C. Paxson, G. R. A. Wyllie, W. Sturhahn, S. M. Durbin, P. M. Champion, E. E. Alp, W. R. Scheidt, J. Phys. Condens. Matter 2001, 13, 7707;
- 26bW. R. Scheidt, S. M. Durbin, J. T. Sage, J. Inorg. Biochem. 2005, 99, 60–71.
- 27B. W. Dale, R. J. P. Williams, P. R. Edwards, C. E. Johnson, J. Chem. Phys. 1968, 49, 3445–3449.